Frontiers of Mathematics in China >
Estimates of generalized Chebyshev function on GLm
Received date: 16 Feb 2012
Accepted date: 07 Aug 2012
Published date: 01 Oct 2012
Copyright
In this paper, we study the generalized Chebyshev function related to automorphic L-functions of , and estimate its asymptotic behavior with respect to the parameters of the original automorphic objects.
Key words: Automorphic L-function; Chebyshev function; explicit formula; conductor
Yan QU , Shuai ZHAI . Estimates of generalized Chebyshev function on GLm[J]. Frontiers of Mathematics in China, 2012 , 7(5) : 883 -894 . DOI: 10.1007/s11464-012-0238-x
1 |
1. Gallagher P X. A large sieve density estimate near σ= 1. Invent Math, 1970, 11: 329-339
|
2 |
2. Gallagher P X. Some consequences of the Riemann hypothesis. Acta Arith, 1980, 37: 339-343
|
3 |
3. Ingham A E. The Distribution of Prime Numbers. Cambridge: Cambridge University Press, 1932
|
4 |
4. Iwaniec H, Kowalski E. Analytic Number Theory. Providence: Amer Math Soc, 2004
|
5 |
5. Liu J, Ye Y. Superpositions of distinct L-functions. Forum Math, 2002, 14: 419-455
|
6 |
6. Liu J, Ye Y. Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl Math Q, 2007, 3: 481-497
|
7 |
7. Luo W, Rudnick Z, Sarnak P. On Selberg’s eigenvalue conjecture. Geom Funct Anal, 1995, 5: 387-401
|
8 |
8. Qu Y. The prime number theorem for automorphic L-functions for GLm. J Number Theory, 2007, 122: 84-99
|
9 |
9. Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Cambridge: Cambridge University Press, 1995
|
10 |
10. Wu J, Ye Y. Hypothesis H and the prime number theorem for automorphic representations. Funct Approx Comment Math, 2007, 37(2): 461-471
|
/
〈 | 〉 |