Estimates of generalized Chebyshev function on GLm

Yan QU, Shuai ZHAI

PDF(161 KB)
PDF(161 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 883-894. DOI: 10.1007/s11464-012-0238-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Estimates of generalized Chebyshev function on GLm

Author information +
History +

Abstract

In this paper, we study the generalized Chebyshev function related to automorphic L-functions of GLm(), and estimate its asymptotic behavior with respect to the parameters of the original automorphic objects.

Keywords

Automorphic L-function / Chebyshev function / explicit formula / conductor

Cite this article

Download citation ▾
Yan QU, Shuai ZHAI. Estimates of generalized Chebyshev function on GLm. Front Math Chin, 2012, 7(5): 883‒894 https://doi.org/10.1007/s11464-012-0238-x

References

[1]
1. Gallagher P X. A large sieve density estimate near σ= 1. Invent Math, 1970, 11: 329-339
CrossRef Google scholar
[2]
2. Gallagher P X. Some consequences of the Riemann hypothesis. Acta Arith, 1980, 37: 339-343
[3]
3. Ingham A E. The Distribution of Prime Numbers. Cambridge: Cambridge University Press, 1932
[4]
4. Iwaniec H, Kowalski E. Analytic Number Theory. Providence: Amer Math Soc, 2004
[5]
5. Liu J, Ye Y. Superpositions of distinct L-functions. Forum Math, 2002, 14: 419-455
CrossRef Google scholar
[6]
6. Liu J, Ye Y. Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl Math Q, 2007, 3: 481-497
[7]
7. Luo W, Rudnick Z, Sarnak P. On Selberg’s eigenvalue conjecture. Geom Funct Anal, 1995, 5: 387-401
CrossRef Google scholar
[8]
8. Qu Y. The prime number theorem for automorphic L-functions for GLm. J Number Theory, 2007, 122: 84-99
CrossRef Google scholar
[9]
9. Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Cambridge: Cambridge University Press, 1995
[10]
10. Wu J, Ye Y. Hypothesis H and the prime number theorem for automorphic representations. Funct Approx Comment Math, 2007, 37(2): 461-471
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(161 KB)

Accesses

Citations

Detail

Sections
Recommended

/