Estimates of generalized Chebyshev function on
Yan QU, Shuai ZHAI
Estimates of generalized Chebyshev function on
In this paper, we study the generalized Chebyshev function related to automorphic L-functions of , and estimate its asymptotic behavior with respect to the parameters of the original automorphic objects.
Automorphic L-function / Chebyshev function / explicit formula / conductor
[1] |
1. Gallagher P X. A large sieve density estimate near σ= 1. Invent Math, 1970, 11: 329-339
CrossRef
Google scholar
|
[2] |
2. Gallagher P X. Some consequences of the Riemann hypothesis. Acta Arith, 1980, 37: 339-343
|
[3] |
3. Ingham A E. The Distribution of Prime Numbers. Cambridge: Cambridge University Press, 1932
|
[4] |
4. Iwaniec H, Kowalski E. Analytic Number Theory. Providence: Amer Math Soc, 2004
|
[5] |
5. Liu J, Ye Y. Superpositions of distinct L-functions. Forum Math, 2002, 14: 419-455
CrossRef
Google scholar
|
[6] |
6. Liu J, Ye Y. Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl Math Q, 2007, 3: 481-497
|
[7] |
7. Luo W, Rudnick Z, Sarnak P. On Selberg’s eigenvalue conjecture. Geom Funct Anal, 1995, 5: 387-401
CrossRef
Google scholar
|
[8] |
8. Qu Y. The prime number theorem for automorphic L-functions for GLm. J Number Theory, 2007, 122: 84-99
CrossRef
Google scholar
|
[9] |
9. Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Cambridge: Cambridge University Press, 1995
|
[10] |
10. Wu J, Ye Y. Hypothesis H and the prime number theorem for automorphic representations. Funct Approx Comment Math, 2007, 37(2): 461-471
CrossRef
Google scholar
|
/
〈 | 〉 |