Estimates of generalized Chebyshev function on GLm

Yan Qu, Shuai Zhai

Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 883-894.

PDF(161 KB)
PDF(161 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 883-894. DOI: 10.1007/s11464-012-0238-x
Research Article
RESEARCH ARTICLE

Estimates of generalized Chebyshev function on GLm

Author information +
History +

Abstract

In this paper, we study the generalized Chebyshev function related to automorphic L-functions of $GL_m \left( {\mathbb{A}_\mathbb{Q} } \right)$, and estimate its asymptotic behavior with respect to the parameters of the original automorphic objects.

Keywords

Automorphic L-function / Chebyshev function / explicit formula / conductor

Cite this article

Download citation ▾
Yan Qu, Shuai Zhai. Estimates of generalized Chebyshev function on GLm. Front. Math. China, 2012, 7(5): 883‒894 https://doi.org/10.1007/s11464-012-0238-x

References

[1.]
Gallagher P. X. A large sieve density estimate near σ = 1. Invent Math, 1970, 11: 329-339
CrossRef Google scholar
[2.]
Gallagher P. X. Some consequences of the Riemann hypothesis. Acta Arith, 1980, 37: 339-343
[3.]
Ingham A. E. The Distribution of Prime Numbers, 1932, Cambridge: Cambridge University Press
[4.]
Iwaniec H., Kowalski E. Analytic Number Theory, 2004, Providence: Amer Math Soc
[5.]
Liu J., Ye Y. Superpositions of distinct L-functions. Forum Math, 2002, 14: 419-455
CrossRef Google scholar
[6.]
Liu J., Ye Y. Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl Math Q, 2007, 3: 481-497
[7.]
Luo W., Rudnick Z., Sarnak P. On Selberg’s eigenvalue conjecture. Geom Funct Anal, 1995, 5: 387-401
CrossRef Google scholar
[8.]
Qu Y. The prime number theorem for automorphic L-functions for GLm. J Number Theory, 2007, 122: 84-99
CrossRef Google scholar
[9.]
Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory, 1995, Cambridge: Cambridge University Press
[10.]
Wu J., Ye Y. Hypothesis H and the prime number theorem for automorphic representations. Funct Approx Comment Math, 2007, 37(2): 461-471
CrossRef Google scholar
AI Summary AI Mindmap
PDF(161 KB)

Accesses

Citations

Detail

Sections
Recommended

/