RESEARCH ARTICLE

Rough Marcinkiewicz integrals along certain smooth curves

  • Bolin MA 1 ,
  • Huoxiong WU , 2 ,
  • Xiating ZHAO 2,3
Expand
  • 1. College of Mathematics and Information Engineering, Jiaxing University, Jiaxing 314001, China
  • 2. School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
  • 3. Third Middle-School of Zhuhai City, Zhuhai 519000, China

Received date: 05 Oct 2010

Accepted date: 28 Jul 2012

Published date: 01 Oct 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper is devoted to the study of the multiple-parameter rough Marcinkiewicz integral operators associated with certain smooth curves. It is shown that the Grafakos-Stefanov type size condition Fα (Sm-1 × Sn-1) of the kernel implies the Lp-boundedness of these Marcinkiewicz integral operators for some α>1/2 and 1+12α<p<1+2α, which is an essential improvement of certain previous results.

Cite this article

Bolin MA , Huoxiong WU , Xiating ZHAO . Rough Marcinkiewicz integrals along certain smooth curves[J]. Frontiers of Mathematics in China, 2012 , 7(5) : 857 -872 . DOI: 10.1007/s11464-012-0237-y

1
Al-Qassem H, Al-Salman A, Cheng L, Pan Y. Marcinkiewicz integrals on product domains. Studia Math, 2005, 167: 227-234

DOI

2
Al-Salman A. On Marcinkiewicz integrals along flat surfaces. Turk J Math, 2005, 29: 111-120

3
Al-Salman A. Rough Marcinkiewicz integrals on product spaces. Int Math Forum, 2007, 23(2): 1119-1128

4
Al-Salman A, Al-Qassem H. Lp bounds for the function of Marcinkiewicz. Math Res Lett, 2002, 9: 697-700

5
Benedek A, Calderón A P, Panzone R. Convolution operators on Banach space valued functions. Proc Nat Acad Sci USA, 1962, 48: 356-365

DOI

6
Chen J, Fan D, Pan Y. A note on a Marcinkiewicz integral operator. Math Nachr, 2001, 227: 33-42

DOI

7
Chen J, Fan D, Ying Y. Rough Marcinkiewicz integrals with L(log L)2 kernels. Adv Math (China), 2001, 30: 179-181

8
Choi Y. Marcinkiewicz integrals with rough homogeneous kernel of degree zero in product domains. J Math Anal Appl, 2001, 261: 53-60

DOI

9
Ding Y. L2-boundedness of Marcinkiewicz integral with rough kernel. Hokkaido Math J, 1998, 27: 105-115

10
Ding Y, Fan D, Pan Y. Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernels. Acta Math Sin (Engl Ser), 200, 16: 593-600

11
Duoandikoetxea J, Rubio de Francia J L. Maximal and singular integral operators via Fourier transform estimates. Invent Math, 1986, 84: 541-561

DOI

12
Grafakos L, Stefanov A. Lp bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ Math J, 1998, 47: 455-469

DOI

13
Hu G, Lu S, Yan D. Lp(ℝm×ℝn) boundedness for the Marcinkiewicz integral on product spaces. Sci China, Ser A, 2003, 46(1): 75-82

DOI

14
Stein E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430-466

DOI

15
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton University Press, 1993, 332

16
Wu H. On Marcinkiewicz integral operators with rough kernels. Integral Equations Operator Theory, 2005, 52: 285-298

DOI

17
Wu H. Lp bounds for Marcinkiewicz integrals associated to surfaces of revolution. J Math Anal Appl, 2006, 321(2): 811-827

DOI

18
18. Wu H. Boundedness of multiple Marcinkiewicz integral operators with rough kernels. J Korean Math Soc, 2006, 43(3): 635-658

DOI

19
Wu H. General Littlewood-Paley functions and singular integral operators on product spaces. Math Nachr, 2006, 279(4): 431-444

DOI

20
Wu H. A rough multiple Marcinkiewicz integral along continuous surfaces. Tohoku Math J, 2007, 59(2): 145-166

DOI

Options
Outlines

/