Rough Marcinkiewicz integrals along certain smooth curves

Bolin MA, Huoxiong WU, Xiating ZHAO

PDF(188 KB)
PDF(188 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 857-872. DOI: 10.1007/s11464-012-0237-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Rough Marcinkiewicz integrals along certain smooth curves

Author information +
History +

Abstract

This paper is devoted to the study of the multiple-parameter rough Marcinkiewicz integral operators associated with certain smooth curves. It is shown that the Grafakos-Stefanov type size condition Fα (Sm-1 × Sn-1) of the kernel implies the Lp-boundedness of these Marcinkiewicz integral operators for some α>1/2 and 1+12α<p<1+2α, which is an essential improvement of certain previous results.

Keywords

Marcinkiewicz integral / rough kernel / smooth curve / LittlewoodPaley theory / Fourier transform estimate

Cite this article

Download citation ▾
Bolin MA, Huoxiong WU, Xiating ZHAO. Rough Marcinkiewicz integrals along certain smooth curves. Front Math Chin, 2012, 7(5): 857‒872 https://doi.org/10.1007/s11464-012-0237-y

References

[1]
Al-Qassem H, Al-Salman A, Cheng L, Pan Y. Marcinkiewicz integrals on product domains. Studia Math, 2005, 167: 227-234
CrossRef Google scholar
[2]
Al-Salman A. On Marcinkiewicz integrals along flat surfaces. Turk J Math, 2005, 29: 111-120
[3]
Al-Salman A. Rough Marcinkiewicz integrals on product spaces. Int Math Forum, 2007, 23(2): 1119-1128
[4]
Al-Salman A, Al-Qassem H. Lp bounds for the function of Marcinkiewicz. Math Res Lett, 2002, 9: 697-700
[5]
Benedek A, Calderón A P, Panzone R. Convolution operators on Banach space valued functions. Proc Nat Acad Sci USA, 1962, 48: 356-365
CrossRef Google scholar
[6]
Chen J, Fan D, Pan Y. A note on a Marcinkiewicz integral operator. Math Nachr, 2001, 227: 33-42
CrossRef Google scholar
[7]
Chen J, Fan D, Ying Y. Rough Marcinkiewicz integrals with L(log L)2 kernels. Adv Math (China), 2001, 30: 179-181
[8]
Choi Y. Marcinkiewicz integrals with rough homogeneous kernel of degree zero in product domains. J Math Anal Appl, 2001, 261: 53-60
CrossRef Google scholar
[9]
Ding Y. L2-boundedness of Marcinkiewicz integral with rough kernel. Hokkaido Math J, 1998, 27: 105-115
[10]
Ding Y, Fan D, Pan Y. Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernels. Acta Math Sin (Engl Ser), 200, 16: 593-600
[11]
Duoandikoetxea J, Rubio de Francia J L. Maximal and singular integral operators via Fourier transform estimates. Invent Math, 1986, 84: 541-561
CrossRef Google scholar
[12]
Grafakos L, Stefanov A. Lp bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ Math J, 1998, 47: 455-469
CrossRef Google scholar
[13]
Hu G, Lu S, Yan D. Lp(ℝm×ℝn) boundedness for the Marcinkiewicz integral on product spaces. Sci China, Ser A, 2003, 46(1): 75-82
CrossRef Google scholar
[14]
Stein E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430-466
CrossRef Google scholar
[15]
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton University Press, 1993, 332
[16]
Wu H. On Marcinkiewicz integral operators with rough kernels. Integral Equations Operator Theory, 2005, 52: 285-298
CrossRef Google scholar
[17]
Wu H. Lp bounds for Marcinkiewicz integrals associated to surfaces of revolution. J Math Anal Appl, 2006, 321(2): 811-827
CrossRef Google scholar
[18]
18. Wu H. Boundedness of multiple Marcinkiewicz integral operators with rough kernels. J Korean Math Soc, 2006, 43(3): 635-658
CrossRef Google scholar
[19]
Wu H. General Littlewood-Paley functions and singular integral operators on product spaces. Math Nachr, 2006, 279(4): 431-444
CrossRef Google scholar
[20]
Wu H. A rough multiple Marcinkiewicz integral along continuous surfaces. Tohoku Math J, 2007, 59(2): 145-166
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(188 KB)

Accesses

Citations

Detail

Sections
Recommended

/