Rough Marcinkiewicz integrals along certain smooth curves

Bolin Ma, Huoxiong Wu, Xiating Zhao

Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 857-872.

PDF(188 KB)
PDF(188 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 857-872. DOI: 10.1007/s11464-012-0237-y
Research Article
RESEARCH ARTICLE

Rough Marcinkiewicz integrals along certain smooth curves

Author information +
History +

Abstract

This paper is devoted to the study of the multiple-parameter rough Marcinkiewicz integral operators associated with certain smooth curves. It is shown that the Grafakos-Stefanov type size condition Fα(Sm−1 × Sn−1) of the kernel implies the Lp-boundedness of these Marcinkiewicz integral operators for some α > 1/2 and $\frac{1}{{2\alpha }} < p < 1 + 2\alpha$, which is an essential improvement of certain previous results.

Keywords

Marcinkiewicz integral / rough kernel / smooth curve / Littlewood-Paley theory / Fourier transform estimate

Cite this article

Download citation ▾
Bolin Ma, Huoxiong Wu, Xiating Zhao. Rough Marcinkiewicz integrals along certain smooth curves. Front. Math. China, 2012, 7(5): 857‒872 https://doi.org/10.1007/s11464-012-0237-y

References

[1.]
Al-Qassem H., Al-Salman A., Cheng L., Pan Y. Marcinkiewicz integrals on product domains. Studia Math, 2005, 167: 227-234
CrossRef Google scholar
[2.]
Al-Salman A. On Marcinkiewicz integrals along flat surfaces. Turk J Math, 2005, 29: 111-120
[3.]
Al-Salman A. Rough Marcinkiewicz integrals on product spaces. Int Math Forum, 2007, 23(2): 1119-1128
[4.]
Al-Salman A., Al-Qassem H. Lp bounds for the function of Marcinkiewicz. Math Res Lett, 2002, 9: 697-700
[5.]
Benedek A., Calderón A. P., Panzone R. Convolution operators on Banach space valued functions. Proc Nat Acad Sci USA, 1962, 48: 356-365
CrossRef Google scholar
[6.]
Chen J., Fan D., Pan Y. A note on a Marcinkiewicz integral operator. Math Nachr, 2001, 227: 33-42
CrossRef Google scholar
[7.]
Chen J., Fan D., Ying Y. Rough Marcinkiewicz integrals with L(log L)2 kernels. Adv Math (China), 2001, 30: 179-181
[8.]
Choi Y. Marcinkiewicz integrals with rough homogeneous kernel of degree zero in product domains. J Math Anal Appl, 2001, 261: 53-60
CrossRef Google scholar
[9.]
Ding Y. L2-boundedness of Marcinkiewicz integral with rough kernel. Hokkaido Math J, 1998, 27: 105-115
[10.]
Ding Y, Fan D, Pan Y. Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernels. Acta Math Sin (Engl Ser), 200, 16: 593–600
[11.]
Duoandikoetxea J., Rubio de Francia J. L. Maximal and singular integral operators via Fourier transform estimates. Invent Math, 1986, 84: 541-561
CrossRef Google scholar
[12.]
Grafakos L., Stefanov A. Lp bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ Math J, 1998, 47: 455-469
CrossRef Google scholar
[13.]
Hu G., Lu S., Yan D. Lp(ℝm × ℝn) boundedness for the Marcinkiewicz integral on product spaces. Sci China, Ser A, 2003, 46(1): 75-82
CrossRef Google scholar
[14.]
Stein E. M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430-466
CrossRef Google scholar
[15.]
Stein E. M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton: Princeton University Press, 332
[16.]
Wu H. On Marcinkiewicz integral operators with rough kernels. Integral Equations Operator Theory, 2005, 52: 285-298
CrossRef Google scholar
[17.]
Wu H. Lp bounds for Marcinkiewicz integrals associated to surfaces of revolution. J Math Anal Appl, 2006, 321(2): 811-827
CrossRef Google scholar
[18.]
Wu H. Boundedness of multiple Marcinkiewicz integral operators with rough kernels. J Korean Math Soc, 2006, 43(3): 635-658
[19.]
Wu H. General Littlewood-Paley functions and singular integral operators on product spaces. Math Nachr, 2006, 279(4): 431-444
CrossRef Google scholar
[20.]
Wu H. A rough multiple Marcinkiewicz integral along continuous surfaces. Tohoku Math J, 2007, 59(2): 145-166
CrossRef Google scholar
AI Summary AI Mindmap
PDF(188 KB)

Accesses

Citations

Detail

Sections
Recommended

/