RESEARCH ARTICLE

Nijenhuis algebras, NS algebras, and N-dendriform algebras

  • Peng LEI 1 ,
  • Li GUO , 1,2
Expand
  • 1. Department of Mathematics, Lanzhou University, Lanzhou 730000, China
  • 2. Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102, USA

Received date: 04 Feb 2012

Accepted date: 07 Jun 2012

Published date: 01 Oct 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we study (associative) Nijenhuis algebras, with emphasis on the relationship between the category of Nijenhuis algebras and the categories of NS algebras and related algebras. This is in analogy to the well-known theory of the adjoint functor from the category of Lie algebras to that of associative algebras, and the more recent results on the adjoint functor from the categories of dendriform and tridendriform algebras to that of RotaBaxter algebras. We first give an explicit construction of free Nijenhuis algebras and then apply it to obtain the universal enveloping Nijenhuis algebra of an NS algebra. We further apply the construction to determine the binary quadratic nonsymmetric algebra, called the N-dendriform algebra, that is compatible with the Nijenhuis algebra. As it turns out, the N-dendriform algebra has more relations than the NS algebra.

Cite this article

Peng LEI , Li GUO . Nijenhuis algebras, NS algebras, and N-dendriform algebras[J]. Frontiers of Mathematics in China, 2012 , 7(5) : 827 -846 . DOI: 10.1007/s11464-012-0225-2

1
Aguiar M. On the associative analog of Lie bialgebras. J Algebra, 2001, 244: 492-532

DOI

2
Baxter G. An analytic problem whose solution follows from a simple algebraic identity. Pacific J Math, 1960, 10: 731-742

3
Bokut L A, Chen Y, Qiu J. Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras. J Pure Appl Algebra, 2010, 214: 89-110

DOI

4
Cariñena J, Grabowski J, Marmo G. Quantum bi-Hamiltonian systems. Internat J Modern Phys A, 2000, 15: 4797-4810

DOI

5
Connes A, Kreimer D. Renormalization in quantum field theory and the RiemannHilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Comm Math Phys, 2000, 210: 249-273

DOI

6
Ebrahimi-Fard K. Loday-type algebras and the Rota-Baxter relation. Lett Math Phys, 2002, 61: 139-147

DOI

7
Ebrahimi-Fard K. On the associative Nijenhuis relation. Electron J Combin, 2004, 11(1): R38

8
Ebramihi-Fard K, Guo L. Rota-Baxter algebras and dendriform algebras. J Pure Appl Algebra, 2008, 212: 320-339

9
Ebramihi-Fard K, Guo L. Free Rota-Baxter algebras and rooted trees. J Algebra Appl, 2008, 7: 167-194

DOI

10
Ebrahimi-Fard K, Guo L, Kreimer D. Spitzer‘s identity and the algebraic Birkhoff decomposition in pQFT. J Phys A: Math Gen, 2004, 37: 11037-11052

DOI

11
Ebrahimi-Fard K, Guo L, Manchon D. Birkhoff type decompositions and the BakerCampbell-Hausdorff recursion. Comm Math Phys, 2006, 267: 821-845

DOI

12
Ebrahimi-Fard K, Leroux P. Generalized shuffles related to Nijenhuis and TD-algebras. Comm Algebra, 2009, 37: 3065-3094

DOI

13
Frölicher A, Nijenhuis A. Theory of vector valued differential forms. Part I. Indag Math, 1956, 18: 338-360

14
Golubchik I Z, Sokolov V V. One more type of classical Yang-Baxter equation. Funct Anal Appl, 2000, 34: 296-298

DOI

15
Golubchik I Z, Sokolov V V. Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras. J Nonlinear Math Phys, 2000, 7: 184-197

DOI

16
Guo L. An Introduction to Rota-Baxter Algebras. Beijing: Higher Education Press and Boston: International Press, 2012

17
Guo L, Keigher W. Baxter algebras and shuffle products. Adv Math, 2000, 150: 117-149

DOI

18
Guo L, Sit W, Zhang R. On Rota’s problem for linear operators in associative algebras. Proc ISSAC, 2011, 147-154

19
Guo L, Sit W, Zhang R. Differential type operators and Gröbner-Shirshov bases. J Symbolic Comput (to appear)

20
Kosmann-Schwarzbach Y, Magri F. Poisson-Nijenhuis structures. Ann Inst Henri Poincaré, 1990, 53: 35-81

21
Leroux P. Construction of Nijenhuis operators and dendriform trialgebras. Int J Math Math Sci, 2004, 40-52: 2595-2615

22
Loday J-L. Dialgebras. In: Dialgebras and Related Operads. Lecture Notes in Math, Vol 1763. 2001, 7-66

DOI

23
Loday J-L, Ronco M. Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory. Contemp Math, 346. 2004, 369-398

DOI

24
Loday J L, Vallette B. Algebraic Operads. Grundlehren Math Wiss, 346. Heidelberg: Springer, 2012

25
Nijenhuis A. Xn-1-forming sets of eigenvectors. Indag Math, 1951, 13: 200-212

26
Uchino K. Twisting on associative algebras and Rota-Baxter type operators. J Noncommut Geom, 2010, 4: 349-379

Options
Outlines

/