Nijenhuis algebras, NS algebras, and N-dendriform algebras
Peng LEI, Li GUO
Nijenhuis algebras, NS algebras, and N-dendriform algebras
In this paper, we study (associative) Nijenhuis algebras, with emphasis on the relationship between the category of Nijenhuis algebras and the categories of NS algebras and related algebras. This is in analogy to the well-known theory of the adjoint functor from the category of Lie algebras to that of associative algebras, and the more recent results on the adjoint functor from the categories of dendriform and tridendriform algebras to that of RotaBaxter algebras. We first give an explicit construction of free Nijenhuis algebras and then apply it to obtain the universal enveloping Nijenhuis algebra of an NS algebra. We further apply the construction to determine the binary quadratic nonsymmetric algebra, called the N-dendriform algebra, that is compatible with the Nijenhuis algebra. As it turns out, the N-dendriform algebra has more relations than the NS algebra.
Nijenhuis algebras / Rota-Baxter algebras / dendriform algebras / NS algebras / N-dendriform algebras
[1] |
Aguiar M. On the associative analog of Lie bialgebras. J Algebra, 2001, 244: 492-532
CrossRef
Google scholar
|
[2] |
Baxter G. An analytic problem whose solution follows from a simple algebraic identity. Pacific J Math, 1960, 10: 731-742
|
[3] |
Bokut L A, Chen Y, Qiu J. Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras. J Pure Appl Algebra, 2010, 214: 89-110
CrossRef
Google scholar
|
[4] |
Cariñena J, Grabowski J, Marmo G. Quantum bi-Hamiltonian systems. Internat J Modern Phys A, 2000, 15: 4797-4810
CrossRef
Google scholar
|
[5] |
Connes A, Kreimer D. Renormalization in quantum field theory and the RiemannHilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Comm Math Phys, 2000, 210: 249-273
CrossRef
Google scholar
|
[6] |
Ebrahimi-Fard K. Loday-type algebras and the Rota-Baxter relation. Lett Math Phys, 2002, 61: 139-147
CrossRef
Google scholar
|
[7] |
Ebrahimi-Fard K. On the associative Nijenhuis relation. Electron J Combin, 2004, 11(1): R38
|
[8] |
Ebramihi-Fard K, Guo L. Rota-Baxter algebras and dendriform algebras. J Pure Appl Algebra, 2008, 212: 320-339
|
[9] |
Ebramihi-Fard K, Guo L. Free Rota-Baxter algebras and rooted trees. J Algebra Appl, 2008, 7: 167-194
CrossRef
Google scholar
|
[10] |
Ebrahimi-Fard K, Guo L, Kreimer D. Spitzer‘s identity and the algebraic Birkhoff decomposition in pQFT. J Phys A: Math Gen, 2004, 37: 11037-11052
CrossRef
Google scholar
|
[11] |
Ebrahimi-Fard K, Guo L, Manchon D. Birkhoff type decompositions and the BakerCampbell-Hausdorff recursion. Comm Math Phys, 2006, 267: 821-845
CrossRef
Google scholar
|
[12] |
Ebrahimi-Fard K, Leroux P. Generalized shuffles related to Nijenhuis and TD-algebras. Comm Algebra, 2009, 37: 3065-3094
CrossRef
Google scholar
|
[13] |
Frölicher A, Nijenhuis A. Theory of vector valued differential forms. Part I. Indag Math, 1956, 18: 338-360
|
[14] |
Golubchik I Z, Sokolov V V. One more type of classical Yang-Baxter equation. Funct Anal Appl, 2000, 34: 296-298
CrossRef
Google scholar
|
[15] |
Golubchik I Z, Sokolov V V. Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras. J Nonlinear Math Phys, 2000, 7: 184-197
CrossRef
Google scholar
|
[16] |
Guo L. An Introduction to Rota-Baxter Algebras. Beijing: Higher Education Press and Boston: International Press, 2012
|
[17] |
Guo L, Keigher W. Baxter algebras and shuffle products. Adv Math, 2000, 150: 117-149
CrossRef
Google scholar
|
[18] |
Guo L, Sit W, Zhang R. On Rota’s problem for linear operators in associative algebras. Proc ISSAC, 2011, 147-154
|
[19] |
Guo L, Sit W, Zhang R. Differential type operators and Gröbner-Shirshov bases. J Symbolic Comput (to appear)
|
[20] |
Kosmann-Schwarzbach Y, Magri F. Poisson-Nijenhuis structures. Ann Inst Henri Poincaré, 1990, 53: 35-81
|
[21] |
Leroux P. Construction of Nijenhuis operators and dendriform trialgebras. Int J Math Math Sci, 2004, 40-52: 2595-2615
|
[22] |
Loday J-L. Dialgebras. In: Dialgebras and Related Operads. Lecture Notes in Math, Vol 1763. 2001, 7-66
CrossRef
Google scholar
|
[23] |
Loday J-L, Ronco M. Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory. Contemp Math, 346. 2004, 369-398
CrossRef
Google scholar
|
[24] |
Loday J L, Vallette B. Algebraic Operads. Grundlehren Math Wiss, 346. Heidelberg: Springer, 2012
|
[25] |
Nijenhuis A. Xn-1-forming sets of eigenvectors. Indag Math, 1951, 13: 200-212
|
[26] |
Uchino K. Twisting on associative algebras and Rota-Baxter type operators. J Noncommut Geom, 2010, 4: 349-379
|
/
〈 | 〉 |