Nijenhuis algebras, NS algebras, and N-dendriform algebras

Peng Lei , Li Guo

Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 827 -846.

PDF (224KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 827 -846. DOI: 10.1007/s11464-012-0225-2
Research Article
RESEARCH ARTICLE

Nijenhuis algebras, NS algebras, and N-dendriform algebras

Author information +
History +
PDF (224KB)

Abstract

In this paper, we study (associative) Nijenhuis algebras, with emphasis on the relationship between the category of Nijenhuis algebras and the categories of NS algebras and related algebras. This is in analogy to the well-known theory of the adjoint functor from the category of Lie algebras to that of associative algebras, and the more recent results on the adjoint functor from the categories of dendriform and tridendriform algebras to that of Rota-Baxter algebras. We first give an explicit construction of free Nijenhuis algebras and then apply it to obtain the universal enveloping Nijenhuis algebra of an NS algebra. We further apply the construction to determine the binary quadratic nonsymmetric algebra, called the N-dendriform algebra, that is compatible with the Nijenhuis algebra. As it turns out, the N-dendriform algebra has more relations than the NS algebra.

Keywords

Nijenhuis algebras / Rota-Baxter algebras / dendriform algebras / NS algebras / N-dendriform algebras

Cite this article

Download citation ▾
Peng Lei, Li Guo. Nijenhuis algebras, NS algebras, and N-dendriform algebras. Front. Math. China, 2012, 7(5): 827-846 DOI:10.1007/s11464-012-0225-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguiar M. On the associative analog of Lie bialgebras. J Algebra, 2001, 244: 492-532

[2]

Baxter G. An analytic problem whose solution follows from a simple algebraic identity. Pacific J Math, 1960, 10: 731-742

[3]

Bokut L. A., Chen Y., Qiu J. Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras. J Pure Appl Algebra, 2010, 214: 89-110

[4]

Cariñena J., Grabowski J., Marmo G. Quantum bi-Hamiltonian systems. Internat J Modern Phys A, 2000, 15: 4797-4810

[5]

Connes A., Kreimer D. Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Comm Math Phys, 2000, 210: 249-273

[6]

Ebrahimi-Fard K. Loday-type algebras and the Rota-Baxter relation. Lett Math Phys, 2002, 61: 139-147

[7]

Ebrahimi-Fard K. On the associative Nijenhuis relation. Electron J Combin, 2004, 11(1): R38

[8]

Ebramihi-Fard K., Guo L. Rota-Baxter algebras and dendriform algebras. J Pure Appl Algebra, 2008, 212: 320-339

[9]

Ebramihi-Fard K., Guo L. Free Rota-Baxter algebras and rooted trees. J Algebra Appl, 2008, 7: 167-194

[10]

Ebrahimi-Fard K., Guo L., Kreimer D. Spitzer’s identity and the algebraic Birkhoff decomposition in pQFT. J Phys A: Math Gen, 2004, 37: 11037-11052

[11]

Ebrahimi-Fard K., Guo L., Manchon D. Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion. Comm Math Phys, 2006, 267: 821-845

[12]

Ebrahimi-Fard K., Leroux P. Generalized shuffles related to Nijenhuis and TD-algebras. Comm Algebra, 2009, 37: 3065-3094

[13]

Frölicher A., Nijenhuis A. Theory of vector valued differential forms. Part I. Indag Math, 1956, 18: 338-360

[14]

Golubchik I. Z., Sokolov V. V. One more type of classical Yang-Baxter equation. Funct Anal Appl, 2000, 34: 296-298

[15]

Golubchik I. Z., Sokolov V. V. Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras. J Nonlinear Math Phys, 2000, 7: 184-197

[16]

Guo L. An Introduction to Rota-Baxter Algebras, 2012, Beijing: Higher Education Press

[17]

Guo L., Keigher W. Baxter algebras and shuffle products. Adv Math, 2000, 150: 117-149

[18]

Guo L, Sit W, Zhang R. On Rota’s problem for linear operators in associative algebras. Proc ISSAC, 2011, 147–154

[19]

Guo L, Sit W, Zhang R. Differential type operators and Gröbner-Shirshov bases. J Symbolic Comput (to appear)

[20]

Kosmann-Schwarzbach Y., Magri F. Poisson-Nijenhuis structures. Ann Inst Henri Poincaré, 1990, 53: 35-81

[21]

Leroux P. Construction of Nijenhuis operators and dendriform trialgebras. Int J Math Math Sci, 2004, 40–52: 2595-2615

[22]

Loday J-L. Dialgebras. In: Dialgebras and Related Operads. Lecture Notes in Math, Vol 1763. 2001, 7–66

[23]

Loday J -L, Ronco M. Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory. Contemp Math, 346. 2004, 369–398

[24]

Loday J. L., Vallette B. Algebraic Operads, 2012, Heidelberg: Springer

[25]

Nijenhuis A. Xn−1-forming sets of eigenvectors. Indag Math, 1951, 13: 200-212

[26]

Uchino K. Twisting on associative algebras and Rota-Baxter type operators. J Noncommut Geom, 2010, 4: 349-379

AI Summary AI Mindmap
PDF (224KB)

935

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/