Nijenhuis algebras, NS algebras, and N-dendriform algebras

Peng LEI, Li GUO

PDF(224 KB)
PDF(224 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 827-846. DOI: 10.1007/s11464-012-0225-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Nijenhuis algebras, NS algebras, and N-dendriform algebras

Author information +
History +

Abstract

In this paper, we study (associative) Nijenhuis algebras, with emphasis on the relationship between the category of Nijenhuis algebras and the categories of NS algebras and related algebras. This is in analogy to the well-known theory of the adjoint functor from the category of Lie algebras to that of associative algebras, and the more recent results on the adjoint functor from the categories of dendriform and tridendriform algebras to that of RotaBaxter algebras. We first give an explicit construction of free Nijenhuis algebras and then apply it to obtain the universal enveloping Nijenhuis algebra of an NS algebra. We further apply the construction to determine the binary quadratic nonsymmetric algebra, called the N-dendriform algebra, that is compatible with the Nijenhuis algebra. As it turns out, the N-dendriform algebra has more relations than the NS algebra.

Keywords

Nijenhuis algebras / Rota-Baxter algebras / dendriform algebras / NS algebras / N-dendriform algebras

Cite this article

Download citation ▾
Peng LEI, Li GUO. Nijenhuis algebras, NS algebras, and N-dendriform algebras. Front Math Chin, 2012, 7(5): 827‒846 https://doi.org/10.1007/s11464-012-0225-2

References

[1]
Aguiar M. On the associative analog of Lie bialgebras. J Algebra, 2001, 244: 492-532
CrossRef Google scholar
[2]
Baxter G. An analytic problem whose solution follows from a simple algebraic identity. Pacific J Math, 1960, 10: 731-742
[3]
Bokut L A, Chen Y, Qiu J. Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras. J Pure Appl Algebra, 2010, 214: 89-110
CrossRef Google scholar
[4]
Cariñena J, Grabowski J, Marmo G. Quantum bi-Hamiltonian systems. Internat J Modern Phys A, 2000, 15: 4797-4810
CrossRef Google scholar
[5]
Connes A, Kreimer D. Renormalization in quantum field theory and the RiemannHilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Comm Math Phys, 2000, 210: 249-273
CrossRef Google scholar
[6]
Ebrahimi-Fard K. Loday-type algebras and the Rota-Baxter relation. Lett Math Phys, 2002, 61: 139-147
CrossRef Google scholar
[7]
Ebrahimi-Fard K. On the associative Nijenhuis relation. Electron J Combin, 2004, 11(1): R38
[8]
Ebramihi-Fard K, Guo L. Rota-Baxter algebras and dendriform algebras. J Pure Appl Algebra, 2008, 212: 320-339
[9]
Ebramihi-Fard K, Guo L. Free Rota-Baxter algebras and rooted trees. J Algebra Appl, 2008, 7: 167-194
CrossRef Google scholar
[10]
Ebrahimi-Fard K, Guo L, Kreimer D. Spitzer‘s identity and the algebraic Birkhoff decomposition in pQFT. J Phys A: Math Gen, 2004, 37: 11037-11052
CrossRef Google scholar
[11]
Ebrahimi-Fard K, Guo L, Manchon D. Birkhoff type decompositions and the BakerCampbell-Hausdorff recursion. Comm Math Phys, 2006, 267: 821-845
CrossRef Google scholar
[12]
Ebrahimi-Fard K, Leroux P. Generalized shuffles related to Nijenhuis and TD-algebras. Comm Algebra, 2009, 37: 3065-3094
CrossRef Google scholar
[13]
Frölicher A, Nijenhuis A. Theory of vector valued differential forms. Part I. Indag Math, 1956, 18: 338-360
[14]
Golubchik I Z, Sokolov V V. One more type of classical Yang-Baxter equation. Funct Anal Appl, 2000, 34: 296-298
CrossRef Google scholar
[15]
Golubchik I Z, Sokolov V V. Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras. J Nonlinear Math Phys, 2000, 7: 184-197
CrossRef Google scholar
[16]
Guo L. An Introduction to Rota-Baxter Algebras. Beijing: Higher Education Press and Boston: International Press, 2012
[17]
Guo L, Keigher W. Baxter algebras and shuffle products. Adv Math, 2000, 150: 117-149
CrossRef Google scholar
[18]
Guo L, Sit W, Zhang R. On Rota’s problem for linear operators in associative algebras. Proc ISSAC, 2011, 147-154
[19]
Guo L, Sit W, Zhang R. Differential type operators and Gröbner-Shirshov bases. J Symbolic Comput (to appear)
[20]
Kosmann-Schwarzbach Y, Magri F. Poisson-Nijenhuis structures. Ann Inst Henri Poincaré, 1990, 53: 35-81
[21]
Leroux P. Construction of Nijenhuis operators and dendriform trialgebras. Int J Math Math Sci, 2004, 40-52: 2595-2615
[22]
Loday J-L. Dialgebras. In: Dialgebras and Related Operads. Lecture Notes in Math, Vol 1763. 2001, 7-66
CrossRef Google scholar
[23]
Loday J-L, Ronco M. Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory. Contemp Math, 346. 2004, 369-398
CrossRef Google scholar
[24]
Loday J L, Vallette B. Algebraic Operads. Grundlehren Math Wiss, 346. Heidelberg: Springer, 2012
[25]
Nijenhuis A. Xn-1-forming sets of eigenvectors. Indag Math, 1951, 13: 200-212
[26]
Uchino K. Twisting on associative algebras and Rota-Baxter type operators. J Noncommut Geom, 2010, 4: 349-379

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(224 KB)

Accesses

Citations

Detail

Sections
Recommended

/