Frontiers of Mathematics in China >
Theta-lifting and geometric quantization for GL(n, )
Received date: 25 Apr 2011
Accepted date: 05 Sep 2011
Published date: 01 Aug 2012
Copyright
In this paper, we verify Vogan’s conjecture on quantization in the representation theory for G = GL(n, ). Also we get some relationship between the induction of orbits and Howe’s θ-lifting of unitary representations.
Mingjing ZHANG . Theta-lifting and geometric quantization for GL(n, )[J]. Frontiers of Mathematics in China, 2012 , 7(4) : 785 -793 . DOI: 10.1007/s11464-012-0177-6
1 |
Adams J, Barbasch D. Reductive dual pair correspondence for complex groups. J Funct Anal, 1995, 132: 1-42
|
2 |
Adams J, Huang J S, Vogan D. Functions on the model orbits in E8. Represent Theory, 1998, 2: 224-263
|
3 |
Collingwood D, McGovern W. Nilpotent Orbits in Semisimple Lie Algebras. New York: Chapman and Hall, 1993
|
4 |
Howe R. θ-series and invariant theory. Proc Sympos Pure Math, 1979, 33(1): 275-285
|
5 |
Howe R. Transcending classical invariant theory. J Amer Math Soc, 1989, 2: 535-552
|
6 |
Kostant B. Quantization and unitary representations. In: Taam C, ed. Lectures in Modern Analysis and Applications. Lecture Notes in Mathematics, Vol 170. Berlin-Heidelberg-New York: Springer-Verlag, 1970, 87-207
|
7 |
Lusztig G, Spaltenstein N. Induced unipotent classes. J Lond Math Soc, 1979, 19: 41-52
|
8 |
Namikawa Y. Induced nilpotent orbits and birational geometry. Adv Math, 2009, 222: 547-564
|
9 |
Torasso P. Quantification géométrique, opérateurs d’entrelacement et représentations unitarires de
|
10 |
Vogan D. Unitary Representations of Reductive Lie Groups. Annals of Mathematics Studies. Princeton: Princeton University Press, 1987
|
11 |
Vogan D. Associated varieties and unipotent representations. In: Barker W, Sally P, eds. Harmonic Analysis on Reductive Groups. Boston-Basel-Berlin: Birkhäuser, 1991, 315-388
|
/
〈 | 〉 |