RESEARCH ARTICLE

Theta-lifting and geometric quantization for GL(n, )

  • Mingjing ZHANG
Expand
  • School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Received date: 25 Apr 2011

Accepted date: 05 Sep 2011

Published date: 01 Aug 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we verify Vogan’s conjecture on quantization in the representation theory for G = GL(n, ). Also we get some relationship between the induction of orbits and Howe’s θ-lifting of unitary representations.

Cite this article

Mingjing ZHANG . Theta-lifting and geometric quantization for GL(n, )[J]. Frontiers of Mathematics in China, 2012 , 7(4) : 785 -793 . DOI: 10.1007/s11464-012-0177-6

1
Adams J, Barbasch D. Reductive dual pair correspondence for complex groups. J Funct Anal, 1995, 132: 1-42

DOI

2
Adams J, Huang J S, Vogan D. Functions on the model orbits in E8. Represent Theory, 1998, 2: 224-263

DOI

3
Collingwood D, McGovern W. Nilpotent Orbits in Semisimple Lie Algebras. New York: Chapman and Hall, 1993

4
Howe R. θ-series and invariant theory. Proc Sympos Pure Math, 1979, 33(1): 275-285

5
Howe R. Transcending classical invariant theory. J Amer Math Soc, 1989, 2: 535-552

DOI

6
Kostant B. Quantization and unitary representations. In: Taam C, ed. Lectures in Modern Analysis and Applications. Lecture Notes in Mathematics, Vol 170. Berlin-Heidelberg-New York: Springer-Verlag, 1970, 87-207

7
Lusztig G, Spaltenstein N. Induced unipotent classes. J Lond Math Soc, 1979, 19: 41-52

DOI

8
Namikawa Y. Induced nilpotent orbits and birational geometry. Adv Math, 2009, 222: 547-564

DOI

9
Torasso P. Quantification géométrique, opérateurs d’entrelacement et représentations unitarires de SL~3(ℝ). Acta Math, 1983, 150: 153-242

DOI

10
Vogan D. Unitary Representations of Reductive Lie Groups. Annals of Mathematics Studies. Princeton: Princeton University Press, 1987

11
Vogan D. Associated varieties and unipotent representations. In: Barker W, Sally P, eds. Harmonic Analysis on Reductive Groups. Boston-Basel-Berlin: Birkhäuser, 1991, 315-388

Options
Outlines

/