Theta-lifting and geometric quantization for GL(n, ℂ)

Mingjing Zhang

Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 785 -793.

PDF (152KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 785 -793. DOI: 10.1007/s11464-012-0177-6
Research Article
RESEARCH ARTICLE

Theta-lifting and geometric quantization for GL(n, ℂ)

Author information +
History +
PDF (152KB)

Abstract

In this paper, we verify Vogan’s conjecture on quantization in the representation theory for G = GL(n,ℂ). Also we get some relationship between the induction of orbits and Howe’s θ-lifting of unitary representations.

Keywords

Vogan’s conjecture on quantization / induced orbits / unitary representations / theta-lifting

Cite this article

Download citation ▾
Mingjing Zhang. Theta-lifting and geometric quantization for GL(n, ℂ). Front. Math. China, 2012, 7(4): 785-793 DOI:10.1007/s11464-012-0177-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams J., Barbasch D. Reductive dual pair correspondence for complex groups. J Funct Anal, 1995, 132: 1-42

[2]

Adams J., Huang J. S., Vogan D. Functions on the model orbits in E8. Represent Theory, 1998, 2: 224-263

[3]

Collingwood D., McGovern W. Nilpotent Orbits in Semisimple Lie Algebras, 1993, New York: Chapman and Hall

[4]

Howe R. θ-series and invariant theory. Proc Sympos Pure Math, 1979, 33(1): 275-285

[5]

Howe R. Transcending classical invariant theory. J Amer Math Soc, 1989, 2: 535-552

[6]

Kostant B. Taam C. Quantization and unitary representations. Lectures in Modern Analysis and Applications, 1970, Berlin-Heidelberg-New York: Springer-Verlag, 87-207

[7]

Lusztig G., Spaltenstein N. Induced unipotent classes. J Lond Math Soc, 1979, 19: 41-52

[8]

Namikawa Y. Induced nilpotent orbits and birational geometry. Adv Math, 2009, 222: 547-564

[9]

Torasso P. Quantification géométrique, opérateurs d’entrelacement et représentations unitarires de $\widetilde{SL}_3 (\mathbb{R})$. Acta Math, 1983, 150: 153-242

[10]

Vogan D. Unitary Representations of Reductive Lie Groups. Annals of Mathematics Studies, 1987, Princeton: Princeton University Press

[11]

Vogan D. Barker W., Sally P. Associated varieties and unipotent representations. Harmonic Analysis on Reductive Groups, 1991, Boston-Basel-Berlin: Birkhäuser, 315-388

AI Summary AI Mindmap
PDF (152KB)

713

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/