Theta-lifting and geometric quantization for GL(n, ?)

Mingjing ZHANG

PDF(152 KB)
PDF(152 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 785-793. DOI: 10.1007/s11464-012-0177-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Theta-lifting and geometric quantization for GL(n, ?)

Author information +
History +

Abstract

In this paper, we verify Vogan’s conjecture on quantization in the representation theory for G = GL(n, ). Also we get some relationship between the induction of orbits and Howe’s θ-lifting of unitary representations.

Keywords

Vogan’s conjecture on quantization / induced orbits / unitary representations / theta-lifting

Cite this article

Download citation ▾
Mingjing ZHANG. Theta-lifting and geometric quantization for GL(n, ). Front Math Chin, 2012, 7(4): 785‒793 https://doi.org/10.1007/s11464-012-0177-6

References

[1]
Adams J, Barbasch D. Reductive dual pair correspondence for complex groups. J Funct Anal, 1995, 132: 1-42
CrossRef Google scholar
[2]
Adams J, Huang J S, Vogan D. Functions on the model orbits in E8. Represent Theory, 1998, 2: 224-263
CrossRef Google scholar
[3]
Collingwood D, McGovern W. Nilpotent Orbits in Semisimple Lie Algebras. New York: Chapman and Hall, 1993
[4]
Howe R. θ-series and invariant theory. Proc Sympos Pure Math, 1979, 33(1): 275-285
[5]
Howe R. Transcending classical invariant theory. J Amer Math Soc, 1989, 2: 535-552
CrossRef Google scholar
[6]
Kostant B. Quantization and unitary representations. In: Taam C, ed. Lectures in Modern Analysis and Applications. Lecture Notes in Mathematics, Vol 170. Berlin-Heidelberg-New York: Springer-Verlag, 1970, 87-207
[7]
Lusztig G, Spaltenstein N. Induced unipotent classes. J Lond Math Soc, 1979, 19: 41-52
CrossRef Google scholar
[8]
Namikawa Y. Induced nilpotent orbits and birational geometry. Adv Math, 2009, 222: 547-564
CrossRef Google scholar
[9]
Torasso P. Quantification géométrique, opérateurs d’entrelacement et représentations unitarires de SL~3(ℝ). Acta Math, 1983, 150: 153-242
CrossRef Google scholar
[10]
Vogan D. Unitary Representations of Reductive Lie Groups. Annals of Mathematics Studies. Princeton: Princeton University Press, 1987
[11]
Vogan D. Associated varieties and unipotent representations. In: Barker W, Sally P, eds. Harmonic Analysis on Reductive Groups. Boston-Basel-Berlin: Birkhäuser, 1991, 315-388

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(152 KB)

Accesses

Citations

Detail

Sections
Recommended

/