RESEARCH ARTICLE

Sign or root of unity ambiguities of certain Gauss sums

  • Lingli XIA 1,2 ,
  • Jing YANG , 2
Expand
  • 1. Basic Courses Department, Beijing Union University, Beijing 100101, China
  • 2. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received date: 02 Dec 2009

Accepted date: 25 Apr 2012

Published date: 01 Aug 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Gauss sums play an important role in number theory and arithmetic geometry. The main objects of study in this paper are Gauss sums over the finite field with q elements. Recently, the problem of explicit evaluation of Gauss sums in the small index case has been studied in several papers. In the process of the evaluation, it is realized that a sign (or a root of unity) ambiguity unavoidably occurs. These papers determined the ambiguities by the congruences modulo L, where L is certain divisor of the order of Gauss sum. However, such method is unavailable in some situations. This paper presents a new method to determine the sign (root of unity) ambiguities of Gauss sums in the index 2 case and index 4 case, which is not only suitable for all the situations with q being odd, but also comparatively more efficient and uniform than the previous method.

Cite this article

Lingli XIA , Jing YANG . Sign or root of unity ambiguities of certain Gauss sums[J]. Frontiers of Mathematics in China, 2012 , 7(4) : 743 -764 . DOI: 10.1007/s11464-012-0217-2

1
Berndt B C, Evans R J, Williams K S. Gauss and Jacobi Sums. New York: J Wiley and Sons Company, 1997

2
Feng K. Explicit description of cyclic quartic number fields. Acta Math Sinica, 1984, 27: 410-424 (in Chinese)

3
Feng K, Yang J. The evaluation of Gauss sums for characters of 2-power order in the index 4 case. Algebra Colloq (to appear)

4
Feng K, Yang J, Luo S. Gauss sum of Index 4: (1) cyclic case. Acta Math Sin (Engl Ser), 2005, 21(6): 1425-1434

DOI

5
Gauss C F. Disquisitiones arithmeticae (trans by Clarke A A). New Haven: Yale Univ Press, 1966

6
Ireland K, Rosen M. A Classical Introduction to Modern Number Theory. New York: Springer-Varlag, 1982

7
Langevin P. Calculs de Certaines Sommes de Gauss. J Number Theory, 1997, 32: 59-64

DOI

8
Lidl R, Nuederreuter H. Finite Fields. New York: Addison-Wesley, 1983

9
Mbodj O D. Quadratic Gauss sums. Finite Fields Appl, 1998, 4: 347-361

DOI

10
McEliece R J. Irreducible cyclic and Gauss sums. Math Centre Tracts, 1974, 55: 179-196

11
Meijer P, Vlugt M V. The evaluation of Gauss sums for characters of 2-power order. J Number Theory, 2003, 100: 381-395

DOI

12
StickelbergerL. Über eine Verallgemeinerung von der Kreistheilung. Math Ann, 1890, 37: 321-367

DOI

13
Vlugt M V. Hasse-Davenport curves, Gauss sums and weight distributions of irreducible cyclic codes. J Number Theory, 1995, 55: 145-159

DOI

14
Yang J, Luo S, Feng K. Gauss sum of Index 4: (2) non-cyclic case. Acta Math Sin (Engl Ser), 2006, 22(3): 833-844

DOI

15
Yang J, Xia L. Complete solving for explicit evaluation of Gauss sums in the index 2 case. Sci China Ser A, 2010, 53(9): 2525-2542

DOI

Options
Outlines

/