Sign or root of unity ambiguities of certain Gauss sums

Lingli XIA, Jing YANG

PDF(245 KB)
PDF(245 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 743-764. DOI: 10.1007/s11464-012-0217-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Sign or root of unity ambiguities of certain Gauss sums

Author information +
History +

Abstract

Gauss sums play an important role in number theory and arithmetic geometry. The main objects of study in this paper are Gauss sums over the finite field with q elements. Recently, the problem of explicit evaluation of Gauss sums in the small index case has been studied in several papers. In the process of the evaluation, it is realized that a sign (or a root of unity) ambiguity unavoidably occurs. These papers determined the ambiguities by the congruences modulo L, where L is certain divisor of the order of Gauss sum. However, such method is unavailable in some situations. This paper presents a new method to determine the sign (root of unity) ambiguities of Gauss sums in the index 2 case and index 4 case, which is not only suitable for all the situations with q being odd, but also comparatively more efficient and uniform than the previous method.

Keywords

Gauss sum / Teichmüller characters / Stickelberger’s congruence / Stickelberger’s relation

Cite this article

Download citation ▾
Lingli XIA, Jing YANG. Sign or root of unity ambiguities of certain Gauss sums. Front Math Chin, 2012, 7(4): 743‒764 https://doi.org/10.1007/s11464-012-0217-2

References

[1]
Berndt B C, Evans R J, Williams K S. Gauss and Jacobi Sums. New York: J Wiley and Sons Company, 1997
[2]
Feng K. Explicit description of cyclic quartic number fields. Acta Math Sinica, 1984, 27: 410-424 (in Chinese)
[3]
Feng K, Yang J. The evaluation of Gauss sums for characters of 2-power order in the index 4 case. Algebra Colloq (to appear)
[4]
Feng K, Yang J, Luo S. Gauss sum of Index 4: (1) cyclic case. Acta Math Sin (Engl Ser), 2005, 21(6): 1425-1434
CrossRef Google scholar
[5]
Gauss C F. Disquisitiones arithmeticae (trans by Clarke A A). New Haven: Yale Univ Press, 1966
[6]
Ireland K, Rosen M. A Classical Introduction to Modern Number Theory. New York: Springer-Varlag, 1982
[7]
Langevin P. Calculs de Certaines Sommes de Gauss. J Number Theory, 1997, 32: 59-64
CrossRef Google scholar
[8]
Lidl R, Nuederreuter H. Finite Fields. New York: Addison-Wesley, 1983
[9]
Mbodj O D. Quadratic Gauss sums. Finite Fields Appl, 1998, 4: 347-361
CrossRef Google scholar
[10]
McEliece R J. Irreducible cyclic and Gauss sums. Math Centre Tracts, 1974, 55: 179-196
[11]
Meijer P, Vlugt M V. The evaluation of Gauss sums for characters of 2-power order. J Number Theory, 2003, 100: 381-395
CrossRef Google scholar
[12]
StickelbergerL. Über eine Verallgemeinerung von der Kreistheilung. Math Ann, 1890, 37: 321-367
CrossRef Google scholar
[13]
Vlugt M V. Hasse-Davenport curves, Gauss sums and weight distributions of irreducible cyclic codes. J Number Theory, 1995, 55: 145-159
CrossRef Google scholar
[14]
Yang J, Luo S, Feng K. Gauss sum of Index 4: (2) non-cyclic case. Acta Math Sin (Engl Ser), 2006, 22(3): 833-844
CrossRef Google scholar
[15]
Yang J, Xia L. Complete solving for explicit evaluation of Gauss sums in the index 2 case. Sci China Ser A, 2010, 53(9): 2525-2542
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(245 KB)

Accesses

Citations

Detail

Sections
Recommended

/