Frontiers of Mathematics in China >
Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents
Received date: 03 Jul 2020
Accepted date: 23 Nov 2020
Published date: 15 Feb 2021
Copyright
We obtain the boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents , such as some sublinear operators, the fractional integral and its commutator.
Xia YU , Zongguang LIU . Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents[J]. Frontiers of Mathematics in China, 2021 , 16(1) : 211 -237 . DOI: 10.1007/s11464-021-0897-6
1 |
Almeida A, Drihem D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J Math Anal Appl, 2012, 394(2): 781–795
|
2 |
Capone C, Cruz-Uribe D, Fiorenza A. The fractional maximal operator and fractional integrals on variable Lp spaces. Rev Mat Iberoam, 2007, 23(23): 743–770
|
3 |
Cruz-Uribe D, Fiorenza A, Martell J M, Pérez C. The boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31(1): 239–264
|
4 |
Cruz-Uribe D, Fiorenza A, Neugebauer C. The maximal function on variable Lp spaces. Ann Acad Sci Fenn Math, 2003, 28(1): 223–238
|
5 |
Diening L, Harjulehto P, Hästö P, Růžička M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, Vol 2017. Berlin: Springer-Verlag, 2011
|
6 |
Herz C S. Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms. J Math Mech, 1968, 18: 283–323
|
7 |
Izuki M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas Mat, 2010, 45(2): 475–503
|
8 |
Izuki M. Boundedness of commutators on Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(2): 199–213
|
9 |
Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal Math, 2010, 36(1): 33–50
|
10 |
Izuki M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(3): 461–472
|
11 |
Izuki M, Noi T. Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents. OCAMI Preprint Ser, 2011, 11–15
|
12 |
Kováčik O, Rákosník J. On spaces Lp(x) and Wk,p(x). Czechoslovak Math J, 1991, 41: 592–618
|
13 |
Li X W, Yang D C. Boundedness of some sublinear operators on Herz spaces. Illinois J Math, 1996, 40(3): 484–501
|
14 |
Lu S Z, Yang D C, Hu G. Herz Type Spaces and Their Applications.Beijing: Science Press, 2008
|
15 |
Orlicz W. On the summability of bounded sequences by continuous methods. Bull Acad Polon Sci Ser Sci Math Astr Phys, 1958, 6: 549{556
|
16 |
Soria F, Weiss G. A remark on singular integrals and power weights. Indiana Univ Math J, 1994, 43(1): 187–204
|
/
〈 |
|
〉 |