RESEARCH ARTICLE

Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents

  • Xia YU ,
  • Zongguang LIU
Expand
  • School of Sciences, China University of Mining and Technology, Beijing 100083, China

Received date: 03 Jul 2020

Accepted date: 23 Nov 2020

Published date: 15 Feb 2021

Copyright

2021 Higher Education Press

Abstract

We obtain the boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents K ˙p(),q()α(), such as some sublinear operators, the fractional integral and its commutator.

Cite this article

Xia YU , Zongguang LIU . Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents[J]. Frontiers of Mathematics in China, 2021 , 16(1) : 211 -237 . DOI: 10.1007/s11464-021-0897-6

1
Almeida A, Drihem D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J Math Anal Appl, 2012, 394(2): 781–795

DOI

2
Capone C, Cruz-Uribe D, Fiorenza A. The fractional maximal operator and fractional integrals on variable Lp spaces. Rev Mat Iberoam, 2007, 23(23): 743–770

DOI

3
Cruz-Uribe D, Fiorenza A, Martell J M, Pérez C. The boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31(1): 239–264

4
Cruz-Uribe D, Fiorenza A, Neugebauer C. The maximal function on variable Lp spaces. Ann Acad Sci Fenn Math, 2003, 28(1): 223–238

5
Diening L, Harjulehto P, Hästö P, Růžička M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, Vol 2017. Berlin: Springer-Verlag, 2011

DOI

6
Herz C S. Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms. J Math Mech, 1968, 18: 283–323

DOI

7
Izuki M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas Mat, 2010, 45(2): 475–503

DOI

8
Izuki M. Boundedness of commutators on Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(2): 199–213

DOI

9
Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal Math, 2010, 36(1): 33–50

DOI

10
Izuki M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(3): 461–472

DOI

11
Izuki M, Noi T. Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents. OCAMI Preprint Ser, 2011, 11–15

12
Kováčik O, Rákosník J. On spaces Lp(x) and Wk,p(x). Czechoslovak Math J, 1991, 41: 592–618

DOI

13
Li X W, Yang D C. Boundedness of some sublinear operators on Herz spaces. Illinois J Math, 1996, 40(3): 484–501

DOI

14
Lu S Z, Yang D C, Hu G. Herz Type Spaces and Their Applications.Beijing: Science Press, 2008

15
Orlicz W. On the summability of bounded sequences by continuous methods. Bull Acad Polon Sci Ser Sci Math Astr Phys, 1958, 6: 549{556

16
Soria F, Weiss G. A remark on singular integrals and power weights. Indiana Univ Math J, 1994, 43(1): 187–204

DOI

Outlines

/