Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents

Xia YU , Zongguang LIU

Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 211 -237.

PDF (335KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 211 -237. DOI: 10.1007/s11464-021-0897-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents

Author information +
History +
PDF (335KB)

Abstract

We obtain the boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents K ˙p(),q()α(), such as some sublinear operators, the fractional integral and its commutator.

Keywords

Sublinear operator / fractional integral / commutator / homogeneous Herz space / variable exponent

Cite this article

Download citation ▾
Xia YU, Zongguang LIU. Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents. Front. Math. China, 2021, 16(1): 211-237 DOI:10.1007/s11464-021-0897-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Almeida A, Drihem D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J Math Anal Appl, 2012, 394(2): 781–795

[2]

Capone C, Cruz-Uribe D, Fiorenza A. The fractional maximal operator and fractional integrals on variable Lp spaces. Rev Mat Iberoam, 2007, 23(23): 743–770

[3]

Cruz-Uribe D, Fiorenza A, Martell J M, Pérez C. The boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31(1): 239–264

[4]

Cruz-Uribe D, Fiorenza A, Neugebauer C. The maximal function on variable Lp spaces. Ann Acad Sci Fenn Math, 2003, 28(1): 223–238

[5]

Diening L, Harjulehto P, Hästö P, Růžička M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, Vol 2017. Berlin: Springer-Verlag, 2011

[6]

Herz C S. Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms. J Math Mech, 1968, 18: 283–323

[7]

Izuki M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas Mat, 2010, 45(2): 475–503

[8]

Izuki M. Boundedness of commutators on Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(2): 199–213

[9]

Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal Math, 2010, 36(1): 33–50

[10]

Izuki M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(3): 461–472

[11]

Izuki M, Noi T. Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents. OCAMI Preprint Ser, 2011, 11–15

[12]

Kováčik O, Rákosník J. On spaces Lp(x) and Wk,p(x). Czechoslovak Math J, 1991, 41: 592–618

[13]

Li X W, Yang D C. Boundedness of some sublinear operators on Herz spaces. Illinois J Math, 1996, 40(3): 484–501

[14]

Lu S Z, Yang D C, Hu G. Herz Type Spaces and Their Applications.Beijing: Science Press, 2008

[15]

Orlicz W. On the summability of bounded sequences by continuous methods. Bull Acad Polon Sci Ser Sci Math Astr Phys, 1958, 6: 549{556

[16]

Soria F, Weiss G. A remark on singular integrals and power weights. Indiana Univ Math J, 1994, 43(1): 187–204

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (335KB)

673

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/