Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents
Xia YU, Zongguang LIU
Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents
We obtain the boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents , such as some sublinear operators, the fractional integral and its commutator.
Sublinear operator / fractional integral / commutator / homogeneous Herz space / variable exponent
[1] |
Almeida A, Drihem D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J Math Anal Appl, 2012, 394(2): 781–795
CrossRef
Google scholar
|
[2] |
Capone C, Cruz-Uribe D, Fiorenza A. The fractional maximal operator and fractional integrals on variable Lp spaces. Rev Mat Iberoam, 2007, 23(23): 743–770
CrossRef
Google scholar
|
[3] |
Cruz-Uribe D, Fiorenza A, Martell J M, Pérez C. The boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31(1): 239–264
|
[4] |
Cruz-Uribe D, Fiorenza A, Neugebauer C. The maximal function on variable Lp spaces. Ann Acad Sci Fenn Math, 2003, 28(1): 223–238
|
[5] |
Diening L, Harjulehto P, Hästö P, Růžička M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, Vol 2017. Berlin: Springer-Verlag, 2011
CrossRef
Google scholar
|
[6] |
Herz C S. Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms. J Math Mech, 1968, 18: 283–323
CrossRef
Google scholar
|
[7] |
Izuki M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas Mat, 2010, 45(2): 475–503
CrossRef
Google scholar
|
[8] |
Izuki M. Boundedness of commutators on Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(2): 199–213
CrossRef
Google scholar
|
[9] |
Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal Math, 2010, 36(1): 33–50
CrossRef
Google scholar
|
[10] |
Izuki M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(3): 461–472
CrossRef
Google scholar
|
[11] |
Izuki M, Noi T. Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents. OCAMI Preprint Ser, 2011, 11–15
|
[12] |
Kováčik O, Rákosník J. On spaces Lp(x) and Wk,p(x). Czechoslovak Math J, 1991, 41: 592–618
CrossRef
Google scholar
|
[13] |
Li X W, Yang D C. Boundedness of some sublinear operators on Herz spaces. Illinois J Math, 1996, 40(3): 484–501
CrossRef
Google scholar
|
[14] |
Lu S Z, Yang D C, Hu G. Herz Type Spaces and Their Applications.Beijing: Science Press, 2008
|
[15] |
Orlicz W. On the summability of bounded sequences by continuous methods. Bull Acad Polon Sci Ser Sci Math Astr Phys, 1958, 6: 549{556
|
[16] |
Soria F, Weiss G. A remark on singular integrals and power weights. Indiana Univ Math J, 1994, 43(1): 187–204
CrossRef
Google scholar
|
/
〈 | 〉 |