Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents

Xia YU, Zongguang LIU

PDF(335 KB)
PDF(335 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 211-237. DOI: 10.1007/s11464-021-0897-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents

Author information +
History +

Abstract

We obtain the boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents K ˙p(),q()α(), such as some sublinear operators, the fractional integral and its commutator.

Keywords

Sublinear operator / fractional integral / commutator / homogeneous Herz space / variable exponent

Cite this article

Download citation ▾
Xia YU, Zongguang LIU. Boundedness of some integral operators and commutators on homogeneous Herz spaces with three variable exponents. Front. Math. China, 2021, 16(1): 211‒237 https://doi.org/10.1007/s11464-021-0897-6

References

[1]
Almeida A, Drihem D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J Math Anal Appl, 2012, 394(2): 781–795
CrossRef Google scholar
[2]
Capone C, Cruz-Uribe D, Fiorenza A. The fractional maximal operator and fractional integrals on variable Lp spaces. Rev Mat Iberoam, 2007, 23(23): 743–770
CrossRef Google scholar
[3]
Cruz-Uribe D, Fiorenza A, Martell J M, Pérez C. The boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31(1): 239–264
[4]
Cruz-Uribe D, Fiorenza A, Neugebauer C. The maximal function on variable Lp spaces. Ann Acad Sci Fenn Math, 2003, 28(1): 223–238
[5]
Diening L, Harjulehto P, Hästö P, Růžička M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, Vol 2017. Berlin: Springer-Verlag, 2011
CrossRef Google scholar
[6]
Herz C S. Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms. J Math Mech, 1968, 18: 283–323
CrossRef Google scholar
[7]
Izuki M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas Mat, 2010, 45(2): 475–503
CrossRef Google scholar
[8]
Izuki M. Boundedness of commutators on Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(2): 199–213
CrossRef Google scholar
[9]
Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal Math, 2010, 36(1): 33–50
CrossRef Google scholar
[10]
Izuki M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59(3): 461–472
CrossRef Google scholar
[11]
Izuki M, Noi T. Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents. OCAMI Preprint Ser, 2011, 11–15
[12]
Kováčik O, Rákosník J. On spaces Lp(x) and Wk,p(x). Czechoslovak Math J, 1991, 41: 592–618
CrossRef Google scholar
[13]
Li X W, Yang D C. Boundedness of some sublinear operators on Herz spaces. Illinois J Math, 1996, 40(3): 484–501
CrossRef Google scholar
[14]
Lu S Z, Yang D C, Hu G. Herz Type Spaces and Their Applications.Beijing: Science Press, 2008
[15]
Orlicz W. On the summability of bounded sequences by continuous methods. Bull Acad Polon Sci Ser Sci Math Astr Phys, 1958, 6: 549{556
[16]
Soria F, Weiss G. A remark on singular integrals and power weights. Indiana Univ Math J, 1994, 43(1): 187–204
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(335 KB)

Accesses

Citations

Detail

Sections
Recommended

/