Frontiers of Mathematics in China >
Grothendieck rings of a class of Hopf algebras of Kac-Paljutkin type
Received date: 03 Jul 2019
Accepted date: 28 Dec 2020
Published date: 15 Feb 2021
Copyright
We construct the Grothendieck rings of a class of dimensional semisimple Hopf Algebras ,which can be viewed as a generalization of the 8 dimensional Kac-Paljutkin Hopf algebra .All irreducible -modules are classified. Furthermore, we describe the Grothendieck rings by generators and relations explicitly.
Key words: Grothendieck ring; Hopf algebra; irreducible module
Jialei CHEN , Shilin YANG , Dingguo WANG . Grothendieck rings of a class of Hopf algebras of Kac-Paljutkin type[J]. Frontiers of Mathematics in China, 2021 , 16(1) : 29 -47 . DOI: 10.1007/s11464-021-0893-x
1 |
Alaoui A E. The character table for a Hopf algebra arising from the Drinfel′d double. J Algebra, 2003, 265: 478–495
|
2 |
Beattie M, Dǎscǎlescu S, Grünenfelder L. Constructing pointed Hopf algebras by Ore extensions. J Algebra, 2000, 225: 743–770
|
3 |
Chen H, Oystaeyen F V, Zhang Y. The Green rings of Taft algebras. Proc Amer Math Soc, 2014, 142: 765–775
|
4 |
Cibils C. A quiver quantum groups. Comm Math Phys, 1993, 157: 459–477
|
5 |
Huang H, Oystaeyen F V, Yang Y, Zhang Y. The Green rings of pointed tensor categories of finite type. J Pure Appl Algebra, 2014, 218: 333–342
|
6 |
Huang H, Yang Y. The Green rings of minimal Hopf quivers. Proc Edinb Math Soc, 2014, 59: 107–141
|
7 |
Kac G I, Paljutkin V G. Finite ring groups. Trudy Moskov Mat Obshch, 1966, 15: 224–261 (in Russian)
|
8 |
Kassel C. Quantum Groups. Grad Texts in Math, Vol 155. New York: Springer-Verlag, 1995
|
9 |
Li L, Zhang Y. The Green rings of the Generalized Taft algebras. Contemp Math, 2013, 585: 275–288
|
10 |
Li Y, Hu N. The Green rings of the 2-rank Taft algebra and its two relatives twisted. J Algebra, 2014, 410: 1–35
|
11 |
Lorenz M. Representations of finite-dimensional Hopf algebras. J Algebra, 1997, 188: 476–505
|
12 |
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
|
13 |
Masuoka A. Semisimple Hopf algebras of dimension 6, 8. Israel J Math, 1995, 92: 361–373
|
14 |
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993
|
15 |
Panov A N. Ore extensions of Hopf algebras. Math Notes, 2003, 74: 401–410
|
16 |
Pansera D. A class of semisimple Hopf algebras acting on quantum polynomial algebras. In: Leroy A, Lomp C, López-Permouth S, Oggier F, eds. Rings, Modules and Codes. Contemp Math, Vol 727. Providence: Amer Math Soc, 2019, 303–316
|
17 |
Shi Y. Finite dimensional Hopf algebras over Kac-Paljutkin algebra H8.Rev Un Mat Argentina, 2019, 60: 265–298
|
18 |
Su D, Yang S. Automorphism group of representation ring of the weak Hopf algebra H8 ˜. Czechoslovak Math J, 2018, 68: 1131–1148
|
19 |
Su D, Yang S. Green rings of weak Hopf algebras based on generalized Taft algebras. Period Math Hunger, 2018, 76: 229–242
|
20 |
Su D, Yang S. Representation ring of small quantum group U‾q(sl2).J Math Phys, 2017, 58: 091704
|
21 |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
22 |
Wang D, Zhang J, Zhuang G. Primitive cohomology of Hopf algebras. J Algebra, 2016, 464: 36–96
|
23 |
Wang Z, You L, Chen H. Representations of Hopf-Ore extensions of group algebras and pointed Hopf algebras of rank one. Algebr Represent Theory, 2015, 18: 801–830
|
24 |
Witherspoon S J. The representation ring of the quantum double of a finite group. J Algebra, 1996, 179: 305–329
|
25 |
Xu Y, Wang D, Chen J. Analogues of quantum Schubert cell algebras in PBW- deformations of quantum groups. J Algebra Appl, 2016, 15: 1650179
|
26 |
Yang S. Representation of simple pointed Hopf algebras. J Algebra Appl, 2004, 3: 91–104
|
/
〈 | 〉 |