Grothendieck rings of a class of Hopf algebras of Kac-Paljutkin type

Jialei CHEN, Shilin YANG, Dingguo WANG

PDF(337 KB)
PDF(337 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 29-47. DOI: 10.1007/s11464-021-0893-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Grothendieck rings of a class of Hopf algebras of Kac-Paljutkin type

Author information +
History +

Abstract

We construct the Grothendieck rings of a class of 2n2 dimensional semisimple Hopf Algebras H2n2,which can be viewed as a generalization of the 8 dimensional Kac-Paljutkin Hopf algebra H8.All irreducible H2n2-modules are classified. Furthermore, we describe the Grothendieck rings r(H2n2) by generators and relations explicitly.

Keywords

Grothendieck ring / Hopf algebra / irreducible module

Cite this article

Download citation ▾
Jialei CHEN, Shilin YANG, Dingguo WANG. Grothendieck rings of a class of Hopf algebras of Kac-Paljutkin type. Front. Math. China, 2021, 16(1): 29‒47 https://doi.org/10.1007/s11464-021-0893-x

References

[1]
Alaoui A E. The character table for a Hopf algebra arising from the Drinfel′d double. J Algebra, 2003, 265: 478–495
CrossRef Google scholar
[2]
Beattie M, Dǎscǎlescu S, Grünenfelder L. Constructing pointed Hopf algebras by Ore extensions. J Algebra, 2000, 225: 743–770
CrossRef Google scholar
[3]
Chen H, Oystaeyen F V, Zhang Y. The Green rings of Taft algebras. Proc Amer Math Soc, 2014, 142: 765–775
CrossRef Google scholar
[4]
Cibils C. A quiver quantum groups. Comm Math Phys, 1993, 157: 459–477
CrossRef Google scholar
[5]
Huang H, Oystaeyen F V, Yang Y, Zhang Y. The Green rings of pointed tensor categories of finite type. J Pure Appl Algebra, 2014, 218: 333–342
CrossRef Google scholar
[6]
Huang H, Yang Y. The Green rings of minimal Hopf quivers. Proc Edinb Math Soc, 2014, 59: 107–141
CrossRef Google scholar
[7]
Kac G I, Paljutkin V G. Finite ring groups. Trudy Moskov Mat Obshch, 1966, 15: 224–261 (in Russian)
[8]
Kassel C. Quantum Groups. Grad Texts in Math, Vol 155. New York: Springer-Verlag, 1995
CrossRef Google scholar
[9]
Li L, Zhang Y. The Green rings of the Generalized Taft algebras. Contemp Math, 2013, 585: 275–288
CrossRef Google scholar
[10]
Li Y, Hu N. The Green rings of the 2-rank Taft algebra and its two relatives twisted. J Algebra, 2014, 410: 1–35
CrossRef Google scholar
[11]
Lorenz M. Representations of finite-dimensional Hopf algebras. J Algebra, 1997, 188: 476–505
CrossRef Google scholar
[12]
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
CrossRef Google scholar
[13]
Masuoka A. Semisimple Hopf algebras of dimension 6, 8. Israel J Math, 1995, 92: 361–373
CrossRef Google scholar
[14]
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993
CrossRef Google scholar
[15]
Panov A N. Ore extensions of Hopf algebras. Math Notes, 2003, 74: 401–410
CrossRef Google scholar
[16]
Pansera D. A class of semisimple Hopf algebras acting on quantum polynomial algebras. In: Leroy A, Lomp C, López-Permouth S, Oggier F, eds. Rings, Modules and Codes. Contemp Math, Vol 727. Providence: Amer Math Soc, 2019, 303–316
CrossRef Google scholar
[17]
Shi Y. Finite dimensional Hopf algebras over Kac-Paljutkin algebra H8.Rev Un Mat Argentina, 2019, 60: 265–298
[18]
Su D, Yang S. Automorphism group of representation ring of the weak Hopf algebra H8 ˜. Czechoslovak Math J, 2018, 68: 1131–1148
[19]
Su D, Yang S. Green rings of weak Hopf algebras based on generalized Taft algebras. Period Math Hunger, 2018, 76: 229–242
CrossRef Google scholar
[20]
Su D, Yang S. Representation ring of small quantum group U‾q(sl2).J Math Phys, 2017, 58: 091704
[21]
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
[22]
Wang D, Zhang J, Zhuang G. Primitive cohomology of Hopf algebras. J Algebra, 2016, 464: 36–96
CrossRef Google scholar
[23]
Wang Z, You L, Chen H. Representations of Hopf-Ore extensions of group algebras and pointed Hopf algebras of rank one. Algebr Represent Theory, 2015, 18: 801–830
CrossRef Google scholar
[24]
Witherspoon S J. The representation ring of the quantum double of a finite group. J Algebra, 1996, 179: 305–329
CrossRef Google scholar
[25]
Xu Y, Wang D, Chen J. Analogues of quantum Schubert cell algebras in PBW- deformations of quantum groups. J Algebra Appl, 2016, 15: 1650179
CrossRef Google scholar
[26]
Yang S. Representation of simple pointed Hopf algebras. J Algebra Appl, 2004, 3: 91–104
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(337 KB)

Accesses

Citations

Detail

Sections
Recommended

/