RESEARCH ARTICLE

Singular integral operators on product domains along twisted surfaces

  • Ahmad AL-SALMAN
Expand
  • Department of Mathematics, Sultan Qaboos University, Sultanate, Oman Department of Mathematics, Yarmouk University, Irbid, Jordan

Received date: 04 Dec 2020

Accepted date: 10 Feb 2021

Published date: 15 Feb 2021

Copyright

2021 Higher Education Press

Abstract

We introduce a class of singular integral operators on product domains along twisted surfaces. We prove that the operators are bounded on Lp provided that the kernels satisfy weak conditions.

Cite this article

Ahmad AL-SALMAN . Singular integral operators on product domains along twisted surfaces[J]. Frontiers of Mathematics in China, 2021 , 16(1) : 13 -28 . DOI: 10.1007/s11464-021-0911-z

1
Al-Qassem H, Al-Salman A.Lp Boundedness of a class of singular integral operators with rough kernels. Turkish J Math, 2001, 25(4): 519–533

DOI

2
Al-Qassem H, Pan Y. Lp boundedness for singular integrals with rough kernels on product domains. Hokkaido Math J, 2002, 31: 555–613

DOI

3
Al-Salman A, Al-Qassem H, Pan Y. Singular integrals on product domains. Indiana Univ Math J, 2006, 55(1): 369–387

DOI

4
Al-Salman A, Pan Y. Singular integrals with rough kernels in Llog+L(Sn–1). J Lond Math Soc (2), 2002, 66:: 153–174

DOI

5
Duoandikoetxea J. Multiple singular integrals and maximal functions along hyper-surfaces. Ann Inst Fourier (Grenoble), 1986, 36: 185–206

DOI

6
Fan D, Guo K, Pan Y. Singular integrals with rough kernels on product spaces. Hokkaido Math J, 1999, 28: 435–460

DOI

7
Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119: 799–839

DOI

8
Fefferman R. Singular integrals on product domains. Bull Amer Math Soc, 1981, 4: 195–201

DOI

9
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143

DOI

10
Jiang Y, Lu S. A class of singular integral operators with rough kernels on product domains. Hokkaido Math J, 1995, 24: 1–7

DOI

11
Keitoku M, Sato E. Block spaces on the unit sphere in Rn. Proc Amer Math Soc, 1993, 119: 453–455

DOI

12
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Math Ser, 43. Princeton: Princeton Univ Press, 1993

DOI

Outlines

/