Singular integral operators on product domains along twisted surfaces

Ahmad AL-SALMAN

PDF(299 KB)
PDF(299 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 13-28. DOI: 10.1007/s11464-021-0911-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Singular integral operators on product domains along twisted surfaces

Author information +
History +

Abstract

We introduce a class of singular integral operators on product domains along twisted surfaces. We prove that the operators are bounded on Lp provided that the kernels satisfy weak conditions.

Keywords

Singular integral operators on product domains / rough kernels / Lp estimates / Hardy Littlewood maximal function / truncated maximal singular integrals / twisted surfaces / block spaces

Cite this article

Download citation ▾
Ahmad AL-SALMAN. Singular integral operators on product domains along twisted surfaces. Front. Math. China, 2021, 16(1): 13‒28 https://doi.org/10.1007/s11464-021-0911-z

References

[1]
Al-Qassem H, Al-Salman A.Lp Boundedness of a class of singular integral operators with rough kernels. Turkish J Math, 2001, 25(4): 519–533
CrossRef Google scholar
[2]
Al-Qassem H, Pan Y. Lp boundedness for singular integrals with rough kernels on product domains. Hokkaido Math J, 2002, 31: 555–613
CrossRef Google scholar
[3]
Al-Salman A, Al-Qassem H, Pan Y. Singular integrals on product domains. Indiana Univ Math J, 2006, 55(1): 369–387
CrossRef Google scholar
[4]
Al-Salman A, Pan Y. Singular integrals with rough kernels in Llog+L(Sn–1). J Lond Math Soc (2), 2002, 66:: 153–174
CrossRef Google scholar
[5]
Duoandikoetxea J. Multiple singular integrals and maximal functions along hyper-surfaces. Ann Inst Fourier (Grenoble), 1986, 36: 185–206
CrossRef Google scholar
[6]
Fan D, Guo K, Pan Y. Singular integrals with rough kernels on product spaces. Hokkaido Math J, 1999, 28: 435–460
CrossRef Google scholar
[7]
Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119: 799–839
CrossRef Google scholar
[8]
Fefferman R. Singular integrals on product domains. Bull Amer Math Soc, 1981, 4: 195–201
CrossRef Google scholar
[9]
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143
CrossRef Google scholar
[10]
Jiang Y, Lu S. A class of singular integral operators with rough kernels on product domains. Hokkaido Math J, 1995, 24: 1–7
CrossRef Google scholar
[11]
Keitoku M, Sato E. Block spaces on the unit sphere in Rn. Proc Amer Math Soc, 1993, 119: 453–455
CrossRef Google scholar
[12]
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Math Ser, 43. Princeton: Princeton Univ Press, 1993
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(299 KB)

Accesses

Citations

Detail

Sections
Recommended

/