Singular integral operators on product domains along twisted surfaces

Ahmad AL-SALMAN

Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 13 -28.

PDF (299KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 13 -28. DOI: 10.1007/s11464-021-0911-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Singular integral operators on product domains along twisted surfaces

Author information +
History +
PDF (299KB)

Abstract

We introduce a class of singular integral operators on product domains along twisted surfaces. We prove that the operators are bounded on Lp provided that the kernels satisfy weak conditions.

Keywords

Singular integral operators on product domains / rough kernels / Lp estimates / Hardy Littlewood maximal function / truncated maximal singular integrals / twisted surfaces / block spaces

Cite this article

Download citation ▾
Ahmad AL-SALMAN. Singular integral operators on product domains along twisted surfaces. Front. Math. China, 2021, 16(1): 13-28 DOI:10.1007/s11464-021-0911-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Qassem H, Al-Salman A.Lp Boundedness of a class of singular integral operators with rough kernels. Turkish J Math, 2001, 25(4): 519–533

[2]

Al-Qassem H, Pan Y. Lp boundedness for singular integrals with rough kernels on product domains. Hokkaido Math J, 2002, 31: 555–613

[3]

Al-Salman A, Al-Qassem H, Pan Y. Singular integrals on product domains. Indiana Univ Math J, 2006, 55(1): 369–387

[4]

Al-Salman A, Pan Y. Singular integrals with rough kernels in Llog+L(Sn–1). J Lond Math Soc (2), 2002, 66:: 153–174

[5]

Duoandikoetxea J. Multiple singular integrals and maximal functions along hyper-surfaces. Ann Inst Fourier (Grenoble), 1986, 36: 185–206

[6]

Fan D, Guo K, Pan Y. Singular integrals with rough kernels on product spaces. Hokkaido Math J, 1999, 28: 435–460

[7]

Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119: 799–839

[8]

Fefferman R. Singular integrals on product domains. Bull Amer Math Soc, 1981, 4: 195–201

[9]

Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143

[10]

Jiang Y, Lu S. A class of singular integral operators with rough kernels on product domains. Hokkaido Math J, 1995, 24: 1–7

[11]

Keitoku M, Sato E. Block spaces on the unit sphere in Rn. Proc Amer Math Soc, 1993, 119: 453–455

[12]

Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Math Ser, 43. Princeton: Princeton Univ Press, 1993

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (299KB)

1407

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/