Singular integral operators on product domains along twisted surfaces
Ahmad AL-SALMAN
Singular integral operators on product domains along twisted surfaces
We introduce a class of singular integral operators on product domains along twisted surfaces. We prove that the operators are bounded on Lp provided that the kernels satisfy weak conditions.
Singular integral operators on product domains / rough kernels / Lp estimates / Hardy Littlewood maximal function / truncated maximal singular integrals / twisted surfaces / block spaces
[1] |
Al-Qassem H, Al-Salman A.Lp Boundedness of a class of singular integral operators with rough kernels. Turkish J Math, 2001, 25(4): 519–533
CrossRef
Google scholar
|
[2] |
Al-Qassem H, Pan Y. Lp boundedness for singular integrals with rough kernels on product domains. Hokkaido Math J, 2002, 31: 555–613
CrossRef
Google scholar
|
[3] |
Al-Salman A, Al-Qassem H, Pan Y. Singular integrals on product domains. Indiana Univ Math J, 2006, 55(1): 369–387
CrossRef
Google scholar
|
[4] |
Al-Salman A, Pan Y. Singular integrals with rough kernels in Llog+L(Sn–1). J Lond Math Soc (2), 2002, 66:: 153–174
CrossRef
Google scholar
|
[5] |
Duoandikoetxea J. Multiple singular integrals and maximal functions along hyper-surfaces. Ann Inst Fourier (Grenoble), 1986, 36: 185–206
CrossRef
Google scholar
|
[6] |
Fan D, Guo K, Pan Y. Singular integrals with rough kernels on product spaces. Hokkaido Math J, 1999, 28: 435–460
CrossRef
Google scholar
|
[7] |
Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119: 799–839
CrossRef
Google scholar
|
[8] |
Fefferman R. Singular integrals on product domains. Bull Amer Math Soc, 1981, 4: 195–201
CrossRef
Google scholar
|
[9] |
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143
CrossRef
Google scholar
|
[10] |
Jiang Y, Lu S. A class of singular integral operators with rough kernels on product domains. Hokkaido Math J, 1995, 24: 1–7
CrossRef
Google scholar
|
[11] |
Keitoku M, Sato E. Block spaces on the unit sphere in Rn. Proc Amer Math Soc, 1993, 119: 453–455
CrossRef
Google scholar
|
[12] |
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Math Ser, 43. Princeton: Princeton Univ Press, 1993
CrossRef
Google scholar
|
/
〈 | 〉 |