RESEARCH ARTICLE

Superiority of empirical Bayes estimation of error variance in linear model

  • Ling CHEN 1,2 ,
  • Laisheng WEI , 1
Expand
  • 1. Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026, China
  • 2. School of Mathematical Science, Anhui University, Hefei 230039, China

Received date: 18 Jan 2011

Accepted date: 21 Jan 2012

Published date: 01 Aug 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, the Bayes estimator of the error variance is derived in a linear regression model, and the parametric empirical Bayes estimator (PEBE) is constructed. The superiority of the PEBE over the least squares estimator (LSE) is investigated under the mean square error (MSE) criterion. Finally, some simulation results for the PEBE are obtained.

Cite this article

Ling CHEN , Laisheng WEI . Superiority of empirical Bayes estimation of error variance in linear model[J]. Frontiers of Mathematics in China, 2012 , 7(4) : 629 -644 . DOI: 10.1007/s11464-012-0198-1

1
Berger J O. Statistical Decision Theory and Bayesian Analysis. Berlin: Springer, 1985

2
Box G P, Tiao G C. Bayesian Inference in Statistical Analysis. Reading: Addison-Wesley, 1973

3
Broemeling L D. Bayesian Analysis of Linear Models. New York: Marcel Dekker, 1985

4
Chen Ling. Studies of some issues of the parametric empirical Bayes estimation in linear model. Doctoral Thesis 2011-JX-C-250. Hefei: University of Science and Technology of China, 2011

5
Efron B, Morris C. Empirical Bayes on vector observation: an extension of stein’s method. Biometrika, 1972, 59: 335-347

DOI

6
Ghosh M, Saleh A KMd E, Sen P K. Empirical Bayes subset estimation in regression models. Statist Decisions, 1989, 7: 15-35

7
Kotz S, Nadarajah S. Multivariate t Distributions and Their Applications. Cambridge: Cambridge University Press, 2004

8
Morris C. Parametric empirical Bayes inference: theory and applications. J Amer Statist Assoc, 1983, 78: 47-65

9
Robbins H. An empirical Bayes approach to statistics. In: Proc Third Berkeley Symp on Math Statist Prob, Vol 1. Berkeley: Univ of California Press, 1956, 157-163

10
Singh R S. Empirical Bayes estimation in a multiple linear regression model. Ann Inst Statist Math, 1985, 37: 71-86

DOI

11
Wang S G, Chow S C. Advanced Linear Models: Theory and Applications. New York: Marcel Dekker, 1994

12
Wei L S, Chen J H. Empirical Bayes estimation and its superiority for two-way classification model. Statist Probab Lett, 2003, 63: 165-175

DOI

13
Wei L S, Trenkler G. Mean square error matrix superiority of empirical Bayes estimators under misspecification. Test, 1995, 4: 187-205

DOI

14
Wei L S, Zhang S P. The convergence rates of empirical Bayes estimation in a multiple linear regression model. Ann Inst Statist Math, 1995, 47: 81-97

DOI

15
Wei L S, Zhang W P. The superiorities of Bayes linear minimum risk estimation in linear model. Comm Statist: Theory Methods, 2007, 36: 917-926

DOI

16
Zhang W P, Wei L S, Yang Y N. The superiorities of empirical Bayes estimator of parameters in linear model. Statist Probab Lett, 2005, 72: 43-50

DOI

Options
Outlines

/