Superiority of empirical Bayes estimation of error variance in linear model

Ling CHEN, Laisheng WEI

PDF(193 KB)
PDF(193 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 629-644. DOI: 10.1007/s11464-012-0198-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Superiority of empirical Bayes estimation of error variance in linear model

Author information +
History +

Abstract

In this paper, the Bayes estimator of the error variance is derived in a linear regression model, and the parametric empirical Bayes estimator (PEBE) is constructed. The superiority of the PEBE over the least squares estimator (LSE) is investigated under the mean square error (MSE) criterion. Finally, some simulation results for the PEBE are obtained.

Keywords

Linear regression model / error variance / parametric empirical Bayes estimation / mean square error criterion / simulation result

Cite this article

Download citation ▾
Ling CHEN, Laisheng WEI. Superiority of empirical Bayes estimation of error variance in linear model. Front Math Chin, 2012, 7(4): 629‒644 https://doi.org/10.1007/s11464-012-0198-1

References

[1]
Berger J O. Statistical Decision Theory and Bayesian Analysis. Berlin: Springer, 1985
[2]
Box G P, Tiao G C. Bayesian Inference in Statistical Analysis. Reading: Addison-Wesley, 1973
[3]
Broemeling L D. Bayesian Analysis of Linear Models. New York: Marcel Dekker, 1985
[4]
Chen Ling. Studies of some issues of the parametric empirical Bayes estimation in linear model. Doctoral Thesis 2011-JX-C-250. Hefei: University of Science and Technology of China, 2011
[5]
Efron B, Morris C. Empirical Bayes on vector observation: an extension of stein’s method. Biometrika, 1972, 59: 335-347
CrossRef Google scholar
[6]
Ghosh M, Saleh A KMd E, Sen P K. Empirical Bayes subset estimation in regression models. Statist Decisions, 1989, 7: 15-35
[7]
Kotz S, Nadarajah S. Multivariate t Distributions and Their Applications. Cambridge: Cambridge University Press, 2004
[8]
Morris C. Parametric empirical Bayes inference: theory and applications. J Amer Statist Assoc, 1983, 78: 47-65
[9]
Robbins H. An empirical Bayes approach to statistics. In: Proc Third Berkeley Symp on Math Statist Prob, Vol 1. Berkeley: Univ of California Press, 1956, 157-163
[10]
Singh R S. Empirical Bayes estimation in a multiple linear regression model. Ann Inst Statist Math, 1985, 37: 71-86
CrossRef Google scholar
[11]
Wang S G, Chow S C. Advanced Linear Models: Theory and Applications. New York: Marcel Dekker, 1994
[12]
Wei L S, Chen J H. Empirical Bayes estimation and its superiority for two-way classification model. Statist Probab Lett, 2003, 63: 165-175
CrossRef Google scholar
[13]
Wei L S, Trenkler G. Mean square error matrix superiority of empirical Bayes estimators under misspecification. Test, 1995, 4: 187-205
CrossRef Google scholar
[14]
Wei L S, Zhang S P. The convergence rates of empirical Bayes estimation in a multiple linear regression model. Ann Inst Statist Math, 1995, 47: 81-97
CrossRef Google scholar
[15]
Wei L S, Zhang W P. The superiorities of Bayes linear minimum risk estimation in linear model. Comm Statist: Theory Methods, 2007, 36: 917-926
CrossRef Google scholar
[16]
Zhang W P, Wei L S, Yang Y N. The superiorities of empirical Bayes estimator of parameters in linear model. Statist Probab Lett, 2005, 72: 43-50
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(193 KB)

Accesses

Citations

Detail

Sections
Recommended

/