RESEARCH ARTICLE

Existence of solutions for elliptic equations without superquadraticity condition

  • Yimin ZHANG , 1 ,
  • Yaotian SHEN 2
Expand
  • 1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
  • 2. Department of Mathematics, South China University of Technology, Guangzhou 510641, China

Received date: 30 Mar 2010

Accepted date: 22 Mar 2012

Published date: 01 Jun 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

By weakening or dropping the superquadraticity condition (SQC), the existence of positive solutions for a class of elliptic equations is established. In particular, we deal with the asymptotical linearities as well as the superlinear nonlinearities.

Cite this article

Yimin ZHANG , Yaotian SHEN . Existence of solutions for elliptic equations without superquadraticity condition[J]. Frontiers of Mathematics in China, 2012 , 7(3) : 587 -595 . DOI: 10.1007/s11464-012-0211-8

1
Ambrosetti A, Rabinewitz P H. Dual variational method in critical point theory and applications. J Funct Anal, 1973, 14: 349-381

DOI

2
Cerami G. Un criterio de esistenza per i punti critici su varietà illimitate. Rc Ist Lomb Sci Lett, 1978, 112: 332-336

3
Chen Z H, Shen Y T, Yao Y X. Some existence results of solutions for p-Laplacian. Acta Math Sci, 2003, 23B: 487-496

4
Costa D G, Magalhães C A. Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal, 1994, 23: 1401-1412

DOI

5
Huang Y S, Zhou H S. Positive solution for -Δpu=f(x,u) with f(x,u) growing as up-1 at infinity. Appl Math Lett, 2004, 17: 881-887

DOI

6
Jeanjean L. On the existence of bounded Palais-Smale sequences and applications to a Landesman-Lazer-type problem set on ℝN. Proc Roy Soc Edinburgh, 1999, 129A: 787-809

DOI

7
Li G B, Zhou H S. Asymptotically “linear” Dirichlet problem for the p-Laplacian. Nonlinear Anal, 2001, 43: 1043-1055

DOI

8
Liu S B, Li S J. Infinitely many solutions for a superlinear elliptic equation. Acta Math Sinica, 2003, 46(4): 625-630

9
Schechter M, Zou W M. Superlinear problems. Pacific J Math, 2004, 214: 145-160

DOI

10
Shen Y T, Guo X K. Discussion of nontrivial critical points of the functional ∫ΩF(x,u,Du)dx. Acta Math Sci, 1987, 10: 249-258

11
Wang Z P, Zhou H S. Positive solutions for a nonhomogeneous elliptic equation on ℝN without (AR) condition. J Math Anal Appl, 2009, 353: 470-479

DOI

Options
Outlines

/