Existence of solutions for elliptic equations without superquadraticity condition

Yimin ZHANG, Yaotian SHEN

PDF(132 KB)
PDF(132 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 587-595. DOI: 10.1007/s11464-012-0211-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Existence of solutions for elliptic equations without superquadraticity condition

Author information +
History +

Abstract

By weakening or dropping the superquadraticity condition (SQC), the existence of positive solutions for a class of elliptic equations is established. In particular, we deal with the asymptotical linearities as well as the superlinear nonlinearities.

Keywords

Mountain pass / superquadraticity condition (SQC) / Palais-Smale type condition / weakly superquadraticity condition (WSQC)

Cite this article

Download citation ▾
Yimin ZHANG, Yaotian SHEN. Existence of solutions for elliptic equations without superquadraticity condition. Front Math Chin, 2012, 7(3): 587‒595 https://doi.org/10.1007/s11464-012-0211-8

References

[1]
Ambrosetti A, Rabinewitz P H. Dual variational method in critical point theory and applications. J Funct Anal, 1973, 14: 349-381
CrossRef Google scholar
[2]
Cerami G. Un criterio de esistenza per i punti critici su varietà illimitate. Rc Ist Lomb Sci Lett, 1978, 112: 332-336
[3]
Chen Z H, Shen Y T, Yao Y X. Some existence results of solutions for p-Laplacian. Acta Math Sci, 2003, 23B: 487-496
[4]
Costa D G, Magalhães C A. Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal, 1994, 23: 1401-1412
CrossRef Google scholar
[5]
Huang Y S, Zhou H S. Positive solution for -Δpu=f(x,u) with f(x,u) growing as up-1 at infinity. Appl Math Lett, 2004, 17: 881-887
CrossRef Google scholar
[6]
Jeanjean L. On the existence of bounded Palais-Smale sequences and applications to a Landesman-Lazer-type problem set on ℝN. Proc Roy Soc Edinburgh, 1999, 129A: 787-809
CrossRef Google scholar
[7]
Li G B, Zhou H S. Asymptotically “linear” Dirichlet problem for the p-Laplacian. Nonlinear Anal, 2001, 43: 1043-1055
CrossRef Google scholar
[8]
Liu S B, Li S J. Infinitely many solutions for a superlinear elliptic equation. Acta Math Sinica, 2003, 46(4): 625-630
[9]
Schechter M, Zou W M. Superlinear problems. Pacific J Math, 2004, 214: 145-160
CrossRef Google scholar
[10]
Shen Y T, Guo X K. Discussion of nontrivial critical points of the functional ∫ΩF(x,u,Du)dx. Acta Math Sci, 1987, 10: 249-258
[11]
Wang Z P, Zhou H S. Positive solutions for a nonhomogeneous elliptic equation on ℝN without (AR) condition. J Math Anal Appl, 2009, 353: 470-479
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(132 KB)

Accesses

Citations

Detail

Sections
Recommended

/