Frontiers of Mathematics in China >
Existence of rainbow matchings in properly edge-colored graphs
Received date: 29 Aug 2011
Accepted date: 18 Feb 2012
Published date: 01 Jun 2012
Copyright
Let G be a properly edge-colored graph. A rainbow matching of G is a matching in which no two edges have the same color. Let δ denote the minimum degree of G. We show that if , then G has a rainbow matching of size δ, which answers a question asked by G. Wang [Electron. J. Combin., 2011, 18: #N162] affirmatively. In addition, we prove that if G is a properly colored bipartite graph with bipartition (X, Y) and , then G has a rainbow matching of size δ.
Key words: Rainbow matching; properly edge-colored graph
Guanghui WANG , Jianghua ZHANG , Guizhen LIU . Existence of rainbow matchings in properly edge-colored graphs[J]. Frontiers of Mathematics in China, 2012 , 7(3) : 543 -550 . DOI: 10.1007/s11464-012-0202-9
1 |
Bondy J A, Murty U S R. Graph Theory with Applications. New York: Macmillan Press, 1976
|
2 |
Brualdi R A, Ryser H J. Combinatorial Matrix Theory. Cambridge: Cambridge University Press, 1991
|
3 |
Kano M, Li X L. Monochromatic and heterochromatic subgraphs in edge-colored graphs —a survey. Graphs Combin, 2008, 24: 237-263
|
4 |
Kostochka A, Yancey M. Large rainbow matchings in edge-colored graphs. Combin Probab Comput (to appear)
|
5 |
LeSaulnier T D, Stocker C, Wenger P S, West D B. Rainbow matching in edge-colored graphs. Electron J Combin, 2010, 17: #N26
|
6 |
Li H, Wang G H. Color degree and heterochromatic matchings in edge-colored bipartite graphs. Util Math, 2008, 77: 145-154
|
7 |
Ryser H J. Neuere probleme der kombinatorik. In: Vortrage uber Kombinatorik Oberwolfach. Mathematisches Forschungsinstitut Oberwolfach, <month>July</month>1967, 24-29
|
8 |
Stein K S. Transversals of Latin squares and their generalizations. Pacific J Math, 1975, 59(2): 567-575
|
9 |
Wang G H. Rainbow matchings in properly edge colored graphs. Electron J Combin, 2011, 18: #N162
|
10 |
Wang G H, Li H. Heterochromatic matchings in edge-colored graphs. Electron J Combin, 2008, 15: #N138
|
11 |
Wanless I M. Transversals in Latin squares: A survey. In: Chapman R, ed. Surveys in Combinatorics 2011. London Math Soc Lecture Note Series, No 392. Cambridge: Cambridge University Press, 2011, 403-437
|
/
〈 | 〉 |