![](/develop/static/imgs/pdf.png)
Existence of rainbow matchings in properly edge-colored graphs
Guanghui WANG, Jianghua ZHANG, Guizhen LIU
Existence of rainbow matchings in properly edge-colored graphs
Let G be a properly edge-colored graph. A rainbow matching of G is a matching in which no two edges have the same color. Let δ denote the minimum degree of G. We show that if , then G has a rainbow matching of size δ, which answers a question asked by G. Wang [Electron. J. Combin., 2011, 18: #N162] affirmatively. In addition, we prove that if G is a properly colored bipartite graph with bipartition (X, Y) and , then G has a rainbow matching of size δ.
Rainbow matching / properly edge-colored graph
[1] |
Bondy J A, Murty U S R. Graph Theory with Applications. New York: Macmillan Press, 1976
|
[2] |
Brualdi R A, Ryser H J. Combinatorial Matrix Theory. Cambridge: Cambridge University Press, 1991
|
[3] |
Kano M, Li X L. Monochromatic and heterochromatic subgraphs in edge-colored graphs —a survey. Graphs Combin, 2008, 24: 237-263
CrossRef
Google scholar
|
[4] |
Kostochka A, Yancey M. Large rainbow matchings in edge-colored graphs. Combin Probab Comput (to appear)
|
[5] |
LeSaulnier T D, Stocker C, Wenger P S, West D B. Rainbow matching in edge-colored graphs. Electron J Combin, 2010, 17: #N26
|
[6] |
Li H, Wang G H. Color degree and heterochromatic matchings in edge-colored bipartite graphs. Util Math, 2008, 77: 145-154
|
[7] |
Ryser H J. Neuere probleme der kombinatorik. In: Vortrage uber Kombinatorik Oberwolfach. Mathematisches Forschungsinstitut Oberwolfach, <month>July</month>1967, 24-29
|
[8] |
Stein K S. Transversals of Latin squares and their generalizations. Pacific J Math, 1975, 59(2): 567-575
|
[9] |
Wang G H. Rainbow matchings in properly edge colored graphs. Electron J Combin, 2011, 18: #N162
|
[10] |
Wang G H, Li H. Heterochromatic matchings in edge-colored graphs. Electron J Combin, 2008, 15: #N138
|
[11] |
Wanless I M. Transversals in Latin squares: A survey. In: Chapman R, ed. Surveys in Combinatorics 2011. London Math Soc Lecture Note Series, No 392. Cambridge: Cambridge University Press, 2011, 403-437
|
/
〈 |
|
〉 |