Existence of rainbow matchings in properly edge-colored graphs

Guanghui WANG, Jianghua ZHANG, Guizhen LIU

PDF(106 KB)
PDF(106 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 543-550. DOI: 10.1007/s11464-012-0202-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Existence of rainbow matchings in properly edge-colored graphs

Author information +
History +

Abstract

Let G be a properly edge-colored graph. A rainbow matching of G is a matching in which no two edges have the same color. Let δ denote the minimum degree of G. We show that if |V(G)|>(δ2+14δ+1)/4, then G has a rainbow matching of size δ, which answers a question asked by G. Wang [Electron. J. Combin., 2011, 18: #N162] affirmatively. In addition, we prove that if G is a properly colored bipartite graph with bipartition (X, Y) and max{|X|,|Y|}>(δ2+4δ-4)/4, then G has a rainbow matching of size δ.

Keywords

Rainbow matching / properly edge-colored graph

Cite this article

Download citation ▾
Guanghui WANG, Jianghua ZHANG, Guizhen LIU. Existence of rainbow matchings in properly edge-colored graphs. Front Math Chin, 2012, 7(3): 543‒550 https://doi.org/10.1007/s11464-012-0202-9

References

[1]
Bondy J A, Murty U S R. Graph Theory with Applications. New York: Macmillan Press, 1976
[2]
Brualdi R A, Ryser H J. Combinatorial Matrix Theory. Cambridge: Cambridge University Press, 1991
[3]
Kano M, Li X L. Monochromatic and heterochromatic subgraphs in edge-colored graphs —a survey. Graphs Combin, 2008, 24: 237-263
CrossRef Google scholar
[4]
Kostochka A, Yancey M. Large rainbow matchings in edge-colored graphs. Combin Probab Comput (to appear)
[5]
LeSaulnier T D, Stocker C, Wenger P S, West D B. Rainbow matching in edge-colored graphs. Electron J Combin, 2010, 17: #N26
[6]
Li H, Wang G H. Color degree and heterochromatic matchings in edge-colored bipartite graphs. Util Math, 2008, 77: 145-154
[7]
Ryser H J. Neuere probleme der kombinatorik. In: Vortrage uber Kombinatorik Oberwolfach. Mathematisches Forschungsinstitut Oberwolfach, <month>July</month>1967, 24-29
[8]
Stein K S. Transversals of Latin squares and their generalizations. Pacific J Math, 1975, 59(2): 567-575
[9]
Wang G H. Rainbow matchings in properly edge colored graphs. Electron J Combin, 2011, 18: #N162
[10]
Wang G H, Li H. Heterochromatic matchings in edge-colored graphs. Electron J Combin, 2008, 15: #N138
[11]
Wanless I M. Transversals in Latin squares: A survey. In: Chapman R, ed. Surveys in Combinatorics 2011. London Math Soc Lecture Note Series, No 392. Cambridge: Cambridge University Press, 2011, 403-437

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(106 KB)

Accesses

Citations

Detail

Sections
Recommended

/