Existence of rainbow matchings in properly edge-colored graphs

Guanghui Wang , Jianghua Zhang , Guizhen Liu

Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 543 -550.

PDF (106KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 543 -550. DOI: 10.1007/s11464-012-0202-9
Research Article
RESEARCH ARTICLE

Existence of rainbow matchings in properly edge-colored graphs

Author information +
History +
PDF (106KB)

Abstract

Let G be a properly edge-colored graph. A rainbow matching of G is a matching in which no two edges have the same color. Let δ denote the minimum degree of G. We show that if |V(G)| > (δ2 + 14δ + 1)/4, then G has a rainbow matching of size δ, which answers a question asked by G. Wang [Electron. J. Combin., 2011, 18: #N162] affirmatively. In addition, we prove that if G is a properly colored bipartite graph with bipartition (X, Y) and max{|X|, |Y|} > (δ2 + 4δ − 4)/4, then G has a rainbow matching of size δ.

Keywords

Rainbow matching / properly edge-colored graph

Cite this article

Download citation ▾
Guanghui Wang, Jianghua Zhang, Guizhen Liu. Existence of rainbow matchings in properly edge-colored graphs. Front. Math. China, 2012, 7(3): 543-550 DOI:10.1007/s11464-012-0202-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bondy J. A., Murty U. S. R. Graph Theory with Applications, 1976, New York: Macmillan Press

[2]

Brualdi R. A., Ryser H. J. Combinatorial Matrix Theory, 1991, Cambridge: Cambridge University Press

[3]

Kano M., Li X. L. Monochromatic and heterochromatic subgraphs in edge-colored graphs—a survey. Graphs Combin, 2008, 24: 237-263

[4]

Kostochka A, Yancey M. Large rainbow matchings in edge-colored graphs. Combin Probab Comput (to appear)

[5]

LeSaulnier T D, Stocker C, Wenger P S, West D B Rainbow matching in edge-colored graphs. Electron J Combin, 2010, 17: #N26

[6]

Li H., Wang G. H. Color degree and heterochromatic matchings in edge-colored bipartite graphs. Util Math, 2008, 77: 145-154

[7]

Ryser H J. Neuere probleme der kombinatorik. In: Vortrage uber Kombinatorik Oberwolfach. Mathematisches Forschungsinstitut Oberwolfach, July 1967, 24–29

[8]

Stein K. S. Transversals of Latin squares and their generalizations. Pacific J Math, 1975, 59(2): 567-575

[9]

Wang G H Rainbow matchings in properly edge colored graphs. Electron J Combin, 2011, 18: #N162

[10]

Wang G H, Li H Heterochromatic matchings in edge-colored graphs. Electron J Combin, 2008, 15: #N138

[11]

Wanless I. M. Chapman R. Transversals in Latin squares: A survey. Surveys in Combinatorics 2011, 2011, Cambridge: Cambridge University Press, 403-437

AI Summary AI Mindmap
PDF (106KB)

1043

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/