RESEARCH ARTICLE

Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus

  • Kai TAO
Expand
  • Department of Mathematics, Nanjing University, Nanjing 210093, China

Received date: 13 Jun 2011

Accepted date: 19 Feb 2012

Published date: 01 Jun 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

It is known that the Lyapunov exponent is not continuous at certain points in the space of continuous quasi-periodic cocycles. We show that the Lyapunov exponent is continuous for a higher-dimensional analytic category in this paper. It has a modulus of continuity of the form exp(-|logt|σ) for some 0<σ<1.

Cite this article

Kai TAO . Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus[J]. Frontiers of Mathematics in China, 2012 , 7(3) : 521 -542 . DOI: 10.1007/s11464-012-0201-x

1
Avila A, Jitomirskaya S. The Ten Martini problem. Ann Math, 2009, 170: 303-342

DOI

2
Bochi J. Disontinuity of the Lyapunov exponent for non-hyperbolic cocycle. Preprint, 1999

3
Bochi J. Genericity of zero Lyapunov exponents. Ergodic Theory Dynam Systems, 2002, 22: 1667-1696

DOI

4
Bochi J, Viana M. The Lyapunov exponents of generic volume preserving and symplectic systems. Ann Math, 2005, 161: 1423-1485

DOI

5
Bourgain J. Green’s Function Estimates for Lattice Schröodinger Operators and Applications. Ann Math Stud, No 158. Princeton: Princeton University Press, 2005

6
Bourgain J. Positivity and continuity of the Lyapunov exponent for Shifts on Td with arbitrary frequency vector and real analytic potential. J Anal Math, 2005, 96: 313-355

DOI

7
Bourgain J, Goldstein M, Schlag W. Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift. Commun Math Physics, 2001, 220: 583-621

DOI

8
Bourgain J, Jitomirskaya S. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J Stat Phys, 2002, 108(5-6): 1203-1218

DOI

9
Furman A. On the multiplicative ergodic theorem for uniquely ergodic systems. Ann Inst Henri Poincaré, 1997, 33: 797-815

10
Goldstein M, Schlag W. Hölder continuity of the integrated density of states for quasiperiodic Schrödinger equations and averages of shifts of subharmonic functions. Ann Math, 2001, 154: 155-203

DOI

11
Jitomirskaya S. Metal-insulator transition for the almost Mathieu operator. Ann Math, 1999, 150: 1159-1175

DOI

12
Jitomisrkaya S, Koslover D, Schulteis M. Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles. Ergodic Theory Dynam Systems, 2009, 29: 1881-1905

DOI

13
Jitomirskaya S, Marx C. Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles with singularities. J Fixed Point Theory and Appl (to appear)

14
Lojasiewicz S. Sur le probléme de la division. Studia Math, 1959, 18: 87-136

15
Thouless D. Bandwidth for a quasiperiodic tight-binding model. Phys Rev, 1983, 28: 4272-4276

DOI

16
Thouvenot J. An example of discontinuity in the computation of the Lyapunov exponents. Pro Steklov Inst Math, 1997, 216: 366-369

17
Young L. Some open sets of non-uniformly hyperbolic cocycles. Ergodic Theory Dynam Systems, 1993, 13: 409-415

DOI

Options
Outlines

/