Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus

Kai Tao

Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 521 -542.

PDF (211KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 521 -542. DOI: 10.1007/s11464-012-0201-x
Research Article
RESEARCH ARTICLE

Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus

Author information +
History +
PDF (211KB)

Abstract

It is known that the Lyapunov exponent is not continuous at certain points in the space of continuous quasi-periodic cocycles. We show that the Lyapunov exponent is continuous for a higher-dimensional analytic category in this paper. It has a modulus of continuity of the form exp(−∣logtσ) for some 0 < σ < 1.

Keywords

Analytic quasi-periodic cocycle / Lyapunov exponent / continuity / large deviation theorem / avalanche principle

Cite this article

Download citation ▾
Kai Tao. Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus. Front. Math. China, 2012, 7(3): 521-542 DOI:10.1007/s11464-012-0201-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avila A., Jitomirskaya S. The Ten Martini problem. Ann Math, 2009, 170: 303-342

[2]

Bochi J. Disontinuity of the Lyapunov exponent for non-hyperbolic cocycle. Preprint, 1999

[3]

Bochi J. Genericity of zero Lyapunov exponents. Ergodic Theory Dynam Systems, 2002, 22: 1667-1696

[4]

Bochi J., Viana M. The Lyapunov exponents of generic volume preserving and symplectic systems. Ann Math, 2005, 161: 1423-1485

[5]

Bourgain J. Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Ann Math Stud, No 158, 2005, Princeton: Princeton University Press

[6]

Bourgain J. Positivity and continuity of the Lyapunov exponent for Shifts on \mathbb{T} d with arbitrary frequency vector and real analytic potential. J Anal Math, 2005, 96: 313-355

[7]

Bourgain J., Goldstein M., Schlag W. Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift. Commun Math Physics, 2001, 220: 583-621

[8]

Bourgain J., Jitomirskaya S. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J Stat Phys, 2002, 108(5–6): 1203-1218

[9]

Furman A. On the multiplicative ergodic theorem for uniquely ergodic systems. Ann Inst Henri Poincaré, 1997, 33: 797-815

[10]

Goldstein M., Schlag W. Hölder continuity of the integrated density of states for quasiperiodic Schrödinger equations and averages of shifts of subharmonic functions. Ann Math, 2001, 154: 155-203

[11]

Jitomirskaya S. Metal-insulator transition for the almost Mathieu operator. Ann Math, 1999, 150: 1159-1175

[12]

Jitomisrkaya S., Koslover D., Schulteis M. Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles. Ergodic Theory Dynam Systems, 2009, 29: 1881-1905

[13]

Jitomirskaya S, Marx C. Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles with singularities. J Fixed Point Theory and Appl (to appear)

[14]

Lojasiewicz S. Sur le probléme de la division. Studia Math, 1959, 18: 87-136

[15]

Thouless D. Bandwidth for a quasiperiodic tight-binding model. Phys Rev, 1983, 28: 4272-4276

[16]

Thouvenot J. An example of discontinuity in the computation of the Lyapunov exponents. Pro Steklov Inst Math, 1997, 216: 366-369

[17]

Young L. Some open sets of non-uniformly hyperbolic cocycles. Ergodic Theory Dynam Systems, 1993, 13: 409-415

AI Summary AI Mindmap
PDF (211KB)

969

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/