Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus

Kai TAO

PDF(211 KB)
PDF(211 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 521-542. DOI: 10.1007/s11464-012-0201-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus

Author information +
History +

Abstract

It is known that the Lyapunov exponent is not continuous at certain points in the space of continuous quasi-periodic cocycles. We show that the Lyapunov exponent is continuous for a higher-dimensional analytic category in this paper. It has a modulus of continuity of the form exp(-|logt|σ) for some 0<σ<1.

Keywords

Analytic quasi-periodic cocycle / Lyapunov exponent / continuity / large deviation theorem / avalanche principle

Cite this article

Download citation ▾
Kai TAO. Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus. Front Math Chin, 2012, 7(3): 521‒542 https://doi.org/10.1007/s11464-012-0201-x

References

[1]
Avila A, Jitomirskaya S. The Ten Martini problem. Ann Math, 2009, 170: 303-342
CrossRef Google scholar
[2]
Bochi J. Disontinuity of the Lyapunov exponent for non-hyperbolic cocycle. Preprint, 1999
[3]
Bochi J. Genericity of zero Lyapunov exponents. Ergodic Theory Dynam Systems, 2002, 22: 1667-1696
CrossRef Google scholar
[4]
Bochi J, Viana M. The Lyapunov exponents of generic volume preserving and symplectic systems. Ann Math, 2005, 161: 1423-1485
CrossRef Google scholar
[5]
Bourgain J. Green’s Function Estimates for Lattice Schröodinger Operators and Applications. Ann Math Stud, No 158. Princeton: Princeton University Press, 2005
[6]
Bourgain J. Positivity and continuity of the Lyapunov exponent for Shifts on Td with arbitrary frequency vector and real analytic potential. J Anal Math, 2005, 96: 313-355
CrossRef Google scholar
[7]
Bourgain J, Goldstein M, Schlag W. Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift. Commun Math Physics, 2001, 220: 583-621
CrossRef Google scholar
[8]
Bourgain J, Jitomirskaya S. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J Stat Phys, 2002, 108(5-6): 1203-1218
CrossRef Google scholar
[9]
Furman A. On the multiplicative ergodic theorem for uniquely ergodic systems. Ann Inst Henri Poincaré, 1997, 33: 797-815
[10]
Goldstein M, Schlag W. Hölder continuity of the integrated density of states for quasiperiodic Schrödinger equations and averages of shifts of subharmonic functions. Ann Math, 2001, 154: 155-203
CrossRef Google scholar
[11]
Jitomirskaya S. Metal-insulator transition for the almost Mathieu operator. Ann Math, 1999, 150: 1159-1175
CrossRef Google scholar
[12]
Jitomisrkaya S, Koslover D, Schulteis M. Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles. Ergodic Theory Dynam Systems, 2009, 29: 1881-1905
CrossRef Google scholar
[13]
Jitomirskaya S, Marx C. Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles with singularities. J Fixed Point Theory and Appl (to appear)
[14]
Lojasiewicz S. Sur le probléme de la division. Studia Math, 1959, 18: 87-136
[15]
Thouless D. Bandwidth for a quasiperiodic tight-binding model. Phys Rev, 1983, 28: 4272-4276
CrossRef Google scholar
[16]
Thouvenot J. An example of discontinuity in the computation of the Lyapunov exponents. Pro Steklov Inst Math, 1997, 216: 366-369
[17]
Young L. Some open sets of non-uniformly hyperbolic cocycles. Ergodic Theory Dynam Systems, 1993, 13: 409-415
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(211 KB)

Accesses

Citations

Detail

Sections
Recommended

/