RESEARCH ARTICLE

Integrable systems, multicomponent twisted Heisenberg-Virasoro algebra and its central extensions

  • Yemo WU 1 ,
  • Xiurong XU 2 ,
  • Dafeng ZUO , 1
Expand
  • 1. School of Mathematical Science, University of Science and Technology of China, Hefei 230026, China
  • 2. School of Mathematics and Statistics, Suzhou University, Suzhou 234000, China

Received date: 25 Oct 2020

Accepted date: 24 Dec 2020

Published date: 15 Dec 2020

Copyright

2020 Higher Education Press

Abstract

Let DN be the multicomponent twisted Heisenberg-Virasoro algebra. We compute the second continuous cohomology group with coeficients in and study the bihamiltonian Euler equations associated to DN and its central extensions.

Cite this article

Yemo WU , Xiurong XU , Dafeng ZUO . Integrable systems, multicomponent twisted Heisenberg-Virasoro algebra and its central extensions[J]. Frontiers of Mathematics in China, 2020 , 15(6) : 1231 -1243 . DOI: 10.1007/s11464-020-0891-4

1
Antonowicz M, Fordy A P. Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems. Comm Math Phys, 1989, 124(3): 465–486

DOI

2
Arbarello E, Concini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117(1): 1–36

DOI

3
Arnold V I. Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann Inst Fourier (Grenoble), 1966, 16: 319–361

DOI

4
Arnold V I, Khesin B A. Topological Methods in Hydrodynamics. Appl Math Sci, Vol 125. New York: Springer-Verlag, 1998

DOI

5
Broer L F. Approximate equations for long water waves. Appl Sci Res, 1975, 31: 377–395

DOI

6
Chen M, Liu S-Q, Zhang Y. Hamiltonian structures and their reciprocal transformations for the r-KdV-CH hierarchy. J Geom Phys, 2009, 59(9): 1227–1243

DOI

7
Ebin D G, Marsden J. Groups of diffeomorphisms and the notion of an incompressible fluid. Ann of Math, 1970, 92: 102–163

DOI

8
Ge Y Y, Zuo D. A new class of Euler equation on the dual of the N= 1 extended Neveu-Schwarz algebra. J Math Phys, 2018, 59(11): 113505 (8 pp)

DOI

9
Guha P, Olver P J. Geodesic flow and two (super) component analog of the Camassa-Holm equation. SIGMA Symmetry Integrability Geom Methods Appl, 2006, 2: Paper 054 (9 pp)

DOI

10
Harnad J, Kupershmidt B A. Symplectic geometries on T*G, Hamiltonian group actions and integrable systems. J Geom Phys, 1995, 16: 168–206

DOI

11
Holm D D, Ivanov R I. Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples. J Phys A, 2010, 43(49): 492001 (20 pp)

DOI

12
Kaup D J. A higher-order water-wave equation and the method for solving it. Progr Theoret Phys, 1975, 54: 396–408

DOI

13
Khesin B, Misiolek G. Euler equations on homogeneous spaces and Virasoro orbits. Adv Math, 2003, 176: 116–144

DOI

14
Khesin B A, Wendt R. The Geometry of Infinite-Dimensional Groups. Ergeb Math Grenzgeb (3), Vol 51. New York: Springer-Verlag, 2009

DOI

15
Kirillov A A. Orbits of the group of diffeomorphisms of a circle and local superalgebras. Funct Anal Appl, 1980, 15: 135–137

DOI

16
Kirillov A A. Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments. In: Doebner H D, Palev T D, eds. Twistor Geometry and Non-Linear Systems. Lecture Notes in Math, Vol 970. New York: Springer-Verlag, 1982, 101–123

DOI

17
Kolev B. Bihamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations. Philos Trans Roy Soc A, 2007, 365: 2333–2357

DOI

18
Kupershmidt B A. A coupled Korteweg-de Vries equation with dispersion. J Phys A, 1985, 18: L571–L573

DOI

19
Kupershmidt B A. Mathematics of dispersive water waves. Comm Math Phys, 1985, 99: 51–73

DOI

20
Kupershmidt B A. Lie algebras and Korteweg-de Vries equations. Phys D, 1987, 27: 294–310

DOI

21
Marcel P, Ovsienko V, Roger C. Extension of the Virasoro and Neveu-Schwarz algebras and generalized Sturm-Liouville operators. Lett Math Phys, 1997, 40: 31–39

DOI

22
Misiolek G. A shallow water equation as a geodesic flow on the Bott-Virasoro group. J Geom Phys, 1998, 24: 203–208

DOI

23
Ovsienko V, Khesin B. The super Korteweg-de Vries equation as an Euler equation. Funct Anal Appl, 1988, 21: 329–331

DOI

24
Strachan I A B, Szablikowski B. Novikov algebras and a classification of multicomponent Camassa-Holm equations. Stud Appl Math, 2014, 133: 84–117

DOI

25
Whitham G B. Variational methods and applications to water waves. Proc Roy Soc Lond Ser A, 1967, 299: 6–25

DOI

Outlines

/