Frontiers of Mathematics in China >
Integrable systems, multicomponent twisted Heisenberg-Virasoro algebra and its central extensions
Received date: 25 Oct 2020
Accepted date: 24 Dec 2020
Published date: 15 Dec 2020
Copyright
Let be the multicomponent twisted Heisenberg-Virasoro algebra. We compute the second continuous cohomology group with coeficients in and study the bihamiltonian Euler equations associated to and its central extensions.
Yemo WU , Xiurong XU , Dafeng ZUO . Integrable systems, multicomponent twisted Heisenberg-Virasoro algebra and its central extensions[J]. Frontiers of Mathematics in China, 2020 , 15(6) : 1231 -1243 . DOI: 10.1007/s11464-020-0891-4
1 |
Antonowicz M, Fordy A P. Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems. Comm Math Phys, 1989, 124(3): 465–486
|
2 |
Arbarello E, Concini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117(1): 1–36
|
3 |
Arnold V I. Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann Inst Fourier (Grenoble), 1966, 16: 319–361
|
4 |
Arnold V I, Khesin B A. Topological Methods in Hydrodynamics. Appl Math Sci, Vol 125. New York: Springer-Verlag, 1998
|
5 |
Broer L F. Approximate equations for long water waves. Appl Sci Res, 1975, 31: 377–395
|
6 |
Chen M, Liu S-Q, Zhang Y. Hamiltonian structures and their reciprocal transformations for the r-KdV-CH hierarchy. J Geom Phys, 2009, 59(9): 1227–1243
|
7 |
Ebin D G, Marsden J. Groups of diffeomorphisms and the notion of an incompressible fluid. Ann of Math, 1970, 92: 102–163
|
8 |
Ge Y Y, Zuo D. A new class of Euler equation on the dual of the N= 1 extended Neveu-Schwarz algebra. J Math Phys, 2018, 59(11): 113505 (8 pp)
|
9 |
Guha P, Olver P J. Geodesic flow and two (super) component analog of the Camassa-Holm equation. SIGMA Symmetry Integrability Geom Methods Appl, 2006, 2: Paper 054 (9 pp)
|
10 |
Harnad J, Kupershmidt B A. Symplectic geometries on T*G, Hamiltonian group actions and integrable systems. J Geom Phys, 1995, 16: 168–206
|
11 |
Holm D D, Ivanov R I. Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples. J Phys A, 2010, 43(49): 492001 (20 pp)
|
12 |
Kaup D J. A higher-order water-wave equation and the method for solving it. Progr Theoret Phys, 1975, 54: 396–408
|
13 |
Khesin B, Misiolek G. Euler equations on homogeneous spaces and Virasoro orbits. Adv Math, 2003, 176: 116–144
|
14 |
Khesin B A, Wendt R. The Geometry of Infinite-Dimensional Groups. Ergeb Math Grenzgeb (3), Vol 51. New York: Springer-Verlag, 2009
|
15 |
Kirillov A A. Orbits of the group of diffeomorphisms of a circle and local superalgebras. Funct Anal Appl, 1980, 15: 135–137
|
16 |
Kirillov A A. Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments. In: Doebner H D, Palev T D, eds. Twistor Geometry and Non-Linear Systems. Lecture Notes in Math, Vol 970. New York: Springer-Verlag, 1982, 101–123
|
17 |
Kolev B. Bihamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations. Philos Trans Roy Soc A, 2007, 365: 2333–2357
|
18 |
Kupershmidt B A. A coupled Korteweg-de Vries equation with dispersion. J Phys A, 1985, 18: L571–L573
|
19 |
Kupershmidt B A. Mathematics of dispersive water waves. Comm Math Phys, 1985, 99: 51–73
|
20 |
Kupershmidt B A. Lie algebras and Korteweg-de Vries equations. Phys D, 1987, 27: 294–310
|
21 |
Marcel P, Ovsienko V, Roger C. Extension of the Virasoro and Neveu-Schwarz algebras and generalized Sturm-Liouville operators. Lett Math Phys, 1997, 40: 31–39
|
22 |
Misiolek G. A shallow water equation as a geodesic flow on the Bott-Virasoro group. J Geom Phys, 1998, 24: 203–208
|
23 |
Ovsienko V, Khesin B. The super Korteweg-de Vries equation as an Euler equation. Funct Anal Appl, 1988, 21: 329–331
|
24 |
Strachan I A B, Szablikowski B. Novikov algebras and a classification of multicomponent Camassa-Holm equations. Stud Appl Math, 2014, 133: 84–117
|
25 |
Whitham G B. Variational methods and applications to water waves. Proc Roy Soc Lond Ser A, 1967, 299: 6–25
|
/
〈 | 〉 |