Integrable systems, multicomponent twisted Heisenberg-Virasoro algebra and its central extensions

Yemo WU, Xiurong XU, Dafeng ZUO

PDF(322 KB)
PDF(322 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1231-1243. DOI: 10.1007/s11464-020-0891-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Integrable systems, multicomponent twisted Heisenberg-Virasoro algebra and its central extensions

Author information +
History +

Abstract

Let DN be the multicomponent twisted Heisenberg-Virasoro algebra. We compute the second continuous cohomology group with coeficients in and study the bihamiltonian Euler equations associated to DN and its central extensions.

Keywords

Bihamiltonian Euler equation / multicomponent twisted Heisenberg-Virasoro algebra

Cite this article

Download citation ▾
Yemo WU, Xiurong XU, Dafeng ZUO. Integrable systems, multicomponent twisted Heisenberg-Virasoro algebra and its central extensions. Front. Math. China, 2020, 15(6): 1231‒1243 https://doi.org/10.1007/s11464-020-0891-4

References

[1]
Antonowicz M, Fordy A P. Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems. Comm Math Phys, 1989, 124(3): 465–486
CrossRef Google scholar
[2]
Arbarello E, Concini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117(1): 1–36
CrossRef Google scholar
[3]
Arnold V I. Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann Inst Fourier (Grenoble), 1966, 16: 319–361
CrossRef Google scholar
[4]
Arnold V I, Khesin B A. Topological Methods in Hydrodynamics. Appl Math Sci, Vol 125. New York: Springer-Verlag, 1998
CrossRef Google scholar
[5]
Broer L F. Approximate equations for long water waves. Appl Sci Res, 1975, 31: 377–395
CrossRef Google scholar
[6]
Chen M, Liu S-Q, Zhang Y. Hamiltonian structures and their reciprocal transformations for the r-KdV-CH hierarchy. J Geom Phys, 2009, 59(9): 1227–1243
CrossRef Google scholar
[7]
Ebin D G, Marsden J. Groups of diffeomorphisms and the notion of an incompressible fluid. Ann of Math, 1970, 92: 102–163
CrossRef Google scholar
[8]
Ge Y Y, Zuo D. A new class of Euler equation on the dual of the N= 1 extended Neveu-Schwarz algebra. J Math Phys, 2018, 59(11): 113505 (8 pp)
CrossRef Google scholar
[9]
Guha P, Olver P J. Geodesic flow and two (super) component analog of the Camassa-Holm equation. SIGMA Symmetry Integrability Geom Methods Appl, 2006, 2: Paper 054 (9 pp)
CrossRef Google scholar
[10]
Harnad J, Kupershmidt B A. Symplectic geometries on T*G, Hamiltonian group actions and integrable systems. J Geom Phys, 1995, 16: 168–206
CrossRef Google scholar
[11]
Holm D D, Ivanov R I. Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples. J Phys A, 2010, 43(49): 492001 (20 pp)
CrossRef Google scholar
[12]
Kaup D J. A higher-order water-wave equation and the method for solving it. Progr Theoret Phys, 1975, 54: 396–408
CrossRef Google scholar
[13]
Khesin B, Misiolek G. Euler equations on homogeneous spaces and Virasoro orbits. Adv Math, 2003, 176: 116–144
CrossRef Google scholar
[14]
Khesin B A, Wendt R. The Geometry of Infinite-Dimensional Groups. Ergeb Math Grenzgeb (3), Vol 51. New York: Springer-Verlag, 2009
CrossRef Google scholar
[15]
Kirillov A A. Orbits of the group of diffeomorphisms of a circle and local superalgebras. Funct Anal Appl, 1980, 15: 135–137
CrossRef Google scholar
[16]
Kirillov A A. Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments. In: Doebner H D, Palev T D, eds. Twistor Geometry and Non-Linear Systems. Lecture Notes in Math, Vol 970. New York: Springer-Verlag, 1982, 101–123
CrossRef Google scholar
[17]
Kolev B. Bihamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations. Philos Trans Roy Soc A, 2007, 365: 2333–2357
CrossRef Google scholar
[18]
Kupershmidt B A. A coupled Korteweg-de Vries equation with dispersion. J Phys A, 1985, 18: L571–L573
CrossRef Google scholar
[19]
Kupershmidt B A. Mathematics of dispersive water waves. Comm Math Phys, 1985, 99: 51–73
CrossRef Google scholar
[20]
Kupershmidt B A. Lie algebras and Korteweg-de Vries equations. Phys D, 1987, 27: 294–310
CrossRef Google scholar
[21]
Marcel P, Ovsienko V, Roger C. Extension of the Virasoro and Neveu-Schwarz algebras and generalized Sturm-Liouville operators. Lett Math Phys, 1997, 40: 31–39
CrossRef Google scholar
[22]
Misiolek G. A shallow water equation as a geodesic flow on the Bott-Virasoro group. J Geom Phys, 1998, 24: 203–208
CrossRef Google scholar
[23]
Ovsienko V, Khesin B. The super Korteweg-de Vries equation as an Euler equation. Funct Anal Appl, 1988, 21: 329–331
CrossRef Google scholar
[24]
Strachan I A B, Szablikowski B. Novikov algebras and a classification of multicomponent Camassa-Holm equations. Stud Appl Math, 2014, 133: 84–117
CrossRef Google scholar
[25]
Whitham G B. Variational methods and applications to water waves. Proc Roy Soc Lond Ser A, 1967, 299: 6–25
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(322 KB)

Accesses

Citations

Detail

Sections
Recommended

/