RESEARCH ARTICLE

Flag-transitive 2-υ,5,λ designs with sporadic socle

  • Jiaxin SHEN ,
  • Shenglin ZHOU
Expand
  • School of Mathematics, South China University of Technology, Guangzhou 510640, China

Received date: 10 Jun 2020

Accepted date: 02 Nov 2020

Published date: 15 Dec 2020

Copyright

2020 Higher Education Press

Abstract

We state that the ag-transitive automorphism group of a 2-υ,5,λ design D is primitive of affine type or almost simple type. We also find that there are up to isomorphism 20 2-υ,5,λ designs admitting flag-transitive automorphism groups with socle of a sporadic simple group.

Cite this article

Jiaxin SHEN , Shenglin ZHOU . Flag-transitive 2-υ,5,λ designs with sporadic socle[J]. Frontiers of Mathematics in China, 2020 , 15(6) : 1201 -1210 . DOI: 10.1007/s11464-020-0876-3

1
Biggs N, White A. Permutation Groups and Combinatorial Structures. Cambridge: Cambridge Univ Press, 1979

DOI

2
Bray N, Wilson A. Explicit representations of the maximal subgroups of the Monster. J Algebra, 2006, 300: 834–857

DOI

3
Buekenhout F, Delandtsheer A, Doyen J. Finite linear spaces with flag-transitive groups. J Combin Theory Ser A, 1988, 49: 268–293

DOI

4
Buekenhout F, Delandtsheer A, Doyen J, Kleidman P, Liebeck M, Saxl J. Linear spaces with flag-transitive automorphism groups. Geom Dedicata, 1990, 36: 89–94

DOI

5
Cameron P. Finite permutation groups and finite simple groups. Bull Lond Math Soc, 1981, 13: 1–22

DOI

6
Camina A, Mischke S. Line-transitive automorphism groups of linear spaces. Electron J Combin, 1996, 3: #R3

DOI

7
Colbourn C, Dinitz J. The CRC Handbook of Combinatorial Designs. Boca Raton: CRC Press, 2007

DOI

8
Conway J, Curtis R, Norton S, Parker R, Wilson R. Atlas of Finite Groups. Eynsham: Oxford Univ Press, 1985

9
Davies D. Automorphisms of Designs. Ph D Thesis, University of East Anglia, 1987

10
Dixon J, Mortimer B. Permutation Groups. New York: Springer-Verlag, 1996

DOI

11
Liang H, Zhou S. Flag-transitive point-primitive automorphism groups of non-symmetric 2-(v, k, 2) designs. J Combin Des, 2016, 24: 421–435

DOI

12
Liebeck M, Praeger C, Saxl J. On the O'Nan-Scott theorem for finite primitive permutation groups. J Aust Math Soc, 1988, 44: 389–396

DOI

13
O’Relly Regueiro E. On primitivity and reduction for flag-transitive symmetric designs. J Combin Theory Ser A, 2005, 109: 135–148

DOI

14
The GAP Group. GAP–Groups, Algorithms, and Programming, Version 4.7.4. 2014

15
Tian D, Zhou S. Flag-transitive point-primitive symmetric (v, k, λ) designs with λ at most 100. J Combin Des, 2013, 21: 127–141

DOI

16
Wilson R. The Finite Simple Groups. London: Springer-Verlag, 2009

DOI

17
Zhan X, Ding S. A reduction for block-transitive triple systems. Discrete Math, 2018, 341: 2442–2447

DOI

18
Zhan X, Zhou S, Chen G. Flag-transitive 2-(v, 4, λ) designs of product type. J Combin Des, 2018, 28: 445{462

DOI

19
Zieschang P. Flag-transitive automorphism groups of 2-designs with (r, λ) = 1. J Algebra, 1988, 118: 265–275

DOI

Outlines

/