Flag-transitive 2-υ,5,λ designs with sporadic socle

Jiaxin SHEN, Shenglin ZHOU

PDF(327 KB)
PDF(327 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1201-1210. DOI: 10.1007/s11464-020-0876-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Flag-transitive 2-υ,5,λ designs with sporadic socle

Author information +
History +

Abstract

We state that the ag-transitive automorphism group of a 2-υ,5,λ design D is primitive of affine type or almost simple type. We also find that there are up to isomorphism 20 2-υ,5,λ designs admitting flag-transitive automorphism groups with socle of a sporadic simple group.

Keywords

2-design / primitivity / flag-transitivity / sporadic simple group

Cite this article

Download citation ▾
Jiaxin SHEN, Shenglin ZHOU. Flag-transitive 2-υ,5,λ designs with sporadic socle. Front. Math. China, 2020, 15(6): 1201‒1210 https://doi.org/10.1007/s11464-020-0876-3

References

[1]
Biggs N, White A. Permutation Groups and Combinatorial Structures. Cambridge: Cambridge Univ Press, 1979
CrossRef Google scholar
[2]
Bray N, Wilson A. Explicit representations of the maximal subgroups of the Monster. J Algebra, 2006, 300: 834–857
CrossRef Google scholar
[3]
Buekenhout F, Delandtsheer A, Doyen J. Finite linear spaces with flag-transitive groups. J Combin Theory Ser A, 1988, 49: 268–293
CrossRef Google scholar
[4]
Buekenhout F, Delandtsheer A, Doyen J, Kleidman P, Liebeck M, Saxl J. Linear spaces with flag-transitive automorphism groups. Geom Dedicata, 1990, 36: 89–94
CrossRef Google scholar
[5]
Cameron P. Finite permutation groups and finite simple groups. Bull Lond Math Soc, 1981, 13: 1–22
CrossRef Google scholar
[6]
Camina A, Mischke S. Line-transitive automorphism groups of linear spaces. Electron J Combin, 1996, 3: #R3
CrossRef Google scholar
[7]
Colbourn C, Dinitz J. The CRC Handbook of Combinatorial Designs. Boca Raton: CRC Press, 2007
CrossRef Google scholar
[8]
Conway J, Curtis R, Norton S, Parker R, Wilson R. Atlas of Finite Groups. Eynsham: Oxford Univ Press, 1985
[9]
Davies D. Automorphisms of Designs. Ph D Thesis, University of East Anglia, 1987
[10]
Dixon J, Mortimer B. Permutation Groups. New York: Springer-Verlag, 1996
CrossRef Google scholar
[11]
Liang H, Zhou S. Flag-transitive point-primitive automorphism groups of non-symmetric 2-(v, k, 2) designs. J Combin Des, 2016, 24: 421–435
CrossRef Google scholar
[12]
Liebeck M, Praeger C, Saxl J. On the O'Nan-Scott theorem for finite primitive permutation groups. J Aust Math Soc, 1988, 44: 389–396
CrossRef Google scholar
[13]
O’Relly Regueiro E. On primitivity and reduction for flag-transitive symmetric designs. J Combin Theory Ser A, 2005, 109: 135–148
CrossRef Google scholar
[14]
The GAP Group. GAP–Groups, Algorithms, and Programming, Version 4.7.4. 2014
[15]
Tian D, Zhou S. Flag-transitive point-primitive symmetric (v, k, λ) designs with λ at most 100. J Combin Des, 2013, 21: 127–141
CrossRef Google scholar
[16]
Wilson R. The Finite Simple Groups. London: Springer-Verlag, 2009
CrossRef Google scholar
[17]
Zhan X, Ding S. A reduction for block-transitive triple systems. Discrete Math, 2018, 341: 2442–2447
CrossRef Google scholar
[18]
Zhan X, Zhou S, Chen G. Flag-transitive 2-(v, 4, λ) designs of product type. J Combin Des, 2018, 28: 445{462
CrossRef Google scholar
[19]
Zieschang P. Flag-transitive automorphism groups of 2-designs with (r, λ) = 1. J Algebra, 1988, 118: 265–275
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(327 KB)

Accesses

Citations

Detail

Sections
Recommended

/