RESEARCH ARTICLE

Properties of Berwald scalar curvature

  • Ming LI , 1 ,
  • Lihong ZHANG 2
Expand
  • 1. Mathematical Science Research Center, Chongqing University of Technology, Chongqing 400054, China
  • 2. School of Sciences, Chongqing University of Technology, Chongqing 400054, China

Received date: 18 Jun 2020

Accepted date: 08 Oct 2020

Published date: 15 Dec 2020

Copyright

2020 Higher Education Press

Abstract

We prove that a Finsler manifold with vanishing Berwald scalar curvature has zero E-curvature. As a consequence, Landsberg manifolds with vanishing Berwald scalar curvature are Berwald manifolds. For (α,β)-metrics on manifold of dimension greater than 2, if the mean Landsberg curvature and the Berwald scalar curvature both vanish, then the Berwald curvature also vanishes.

Cite this article

Ming LI , Lihong ZHANG . Properties of Berwald scalar curvature[J]. Frontiers of Mathematics in China, 2020 , 15(6) : 1143 -1153 . DOI: 10.1007/s11464-020-0872-7

1
Bao D, Chern S-S, Shen Z. An Introduction to Riemann-Finsler Geometry. Berlin: Springer-Verlag, 2000

DOI

2
Chen G, He Q, Pan S. On weak Berwald (α, β)-metrics of scalar flag curvature. J Geom Phys, 2014, 86: 112–121

DOI

3
Chern S-S, Shen Z. Riemann-Finsler Geometry. Singapore: World Scientific, 2005

DOI

4
Crampin M. A condition for a Landsberg space to be Berwaldian. Publ Math Debrecen, 2018, 93(1-2): 143–155

DOI

5
Feng H, Li M. Adiabatic limit and connections in Finsler geometry. Comm Anal Geom, 2013, 21(3): 607–624

DOI

6
Li M. Equivalence theorems of Minkowski spaces and applications in Finsler geometry. Acta Math Sinica (Chin Ser), 2019, 62(2): 177–190 (in Chinese)

7
Mo X. An Introduction to Finsler Geometry. Singapore: World Scientific, 2006

DOI

8
Schneider R. Zur affnen differential geometrie im Groen. I. Math Z, 1967, 101: 375–406

DOI

9
Shen Y, Shen Z. Introduction to Modern Finsler Geometry. Singapore: World Scientific, 2016

DOI

10
Shen Z. Volume comparison and its applications in Riemann-Finsler geometry. Adv Math, 1997, 128(2): 306–328

DOI

11
Shen Z. Differential Geometry of Spray and Finsler Spaces. Dordrecht: Springer, 2001

DOI

12
Shen Z. Lectures on Finsler Geometry. Singapore: World Scientific, 2001

DOI

13
Shen Z. Landsberg curvature, S-curvature and Riemann curvature. In: Bao D, Bryant R L, Chern S-S, Shen Z M, eds. A Sampler of Riemann-Finsler Geometry. Math Sci Res Inst Publ, Vol 50. Cambridge: Cambridge Univ Press, 2004, 303–355

14
Simon V, Schellschmidt S, Viesel H. Introduction to the Affine Differential Geometry of Hypersurfaces. Tokyo: Science Univ Tokyo, 1991

15
Zhang W. Lectures on Chern-Weil Theory andWitten Deformations. Singapore: World Scientific,2001

DOI

16
Zou Y, Cheng X. The generalized unicorn problem on (α, β)-metrics. J Math Anal Appl, 2014, 414(2): 574–589

DOI

Outlines

/