Frontiers of Mathematics in China >
Properties of Berwald scalar curvature
Received date: 18 Jun 2020
Accepted date: 08 Oct 2020
Published date: 15 Dec 2020
Copyright
We prove that a Finsler manifold with vanishing Berwald scalar curvature has zero E-curvature. As a consequence, Landsberg manifolds with vanishing Berwald scalar curvature are Berwald manifolds. For (α,β)-metrics on manifold of dimension greater than 2, if the mean Landsberg curvature and the Berwald scalar curvature both vanish, then the Berwald curvature also vanishes.
Ming LI , Lihong ZHANG . Properties of Berwald scalar curvature[J]. Frontiers of Mathematics in China, 2020 , 15(6) : 1143 -1153 . DOI: 10.1007/s11464-020-0872-7
1 |
Bao D, Chern S-S, Shen Z. An Introduction to Riemann-Finsler Geometry. Berlin: Springer-Verlag, 2000
|
2 |
Chen G, He Q, Pan S. On weak Berwald (α, β)-metrics of scalar flag curvature. J Geom Phys, 2014, 86: 112–121
|
3 |
Chern S-S, Shen Z. Riemann-Finsler Geometry. Singapore: World Scientific, 2005
|
4 |
Crampin M. A condition for a Landsberg space to be Berwaldian. Publ Math Debrecen, 2018, 93(1-2): 143–155
|
5 |
Feng H, Li M. Adiabatic limit and connections in Finsler geometry. Comm Anal Geom, 2013, 21(3): 607–624
|
6 |
Li M. Equivalence theorems of Minkowski spaces and applications in Finsler geometry. Acta Math Sinica (Chin Ser), 2019, 62(2): 177–190 (in Chinese)
|
7 |
Mo X. An Introduction to Finsler Geometry. Singapore: World Scientific, 2006
|
8 |
Schneider R. Zur affnen differential geometrie im Groen. I. Math Z, 1967, 101: 375–406
|
9 |
Shen Y, Shen Z. Introduction to Modern Finsler Geometry. Singapore: World Scientific, 2016
|
10 |
Shen Z. Volume comparison and its applications in Riemann-Finsler geometry. Adv Math, 1997, 128(2): 306–328
|
11 |
Shen Z. Differential Geometry of Spray and Finsler Spaces. Dordrecht: Springer, 2001
|
12 |
Shen Z. Lectures on Finsler Geometry. Singapore: World Scientific, 2001
|
13 |
Shen Z. Landsberg curvature, S-curvature and Riemann curvature. In: Bao D, Bryant R L, Chern S-S, Shen Z M, eds. A Sampler of Riemann-Finsler Geometry. Math Sci Res Inst Publ, Vol 50. Cambridge: Cambridge Univ Press, 2004, 303–355
|
14 |
Simon V, Schellschmidt S, Viesel H. Introduction to the Affine Differential Geometry of Hypersurfaces. Tokyo: Science Univ Tokyo, 1991
|
15 |
Zhang W. Lectures on Chern-Weil Theory andWitten Deformations. Singapore: World Scientific,2001
|
16 |
Zou Y, Cheng X. The generalized unicorn problem on (α, β)-metrics. J Math Anal Appl, 2014, 414(2): 574–589
|
/
〈 | 〉 |