Properties of Berwald scalar curvature

Ming LI, Lihong ZHANG

PDF(296 KB)
PDF(296 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1143-1153. DOI: 10.1007/s11464-020-0872-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Properties of Berwald scalar curvature

Author information +
History +

Abstract

We prove that a Finsler manifold with vanishing Berwald scalar curvature has zero E-curvature. As a consequence, Landsberg manifolds with vanishing Berwald scalar curvature are Berwald manifolds. For (α,β)-metrics on manifold of dimension greater than 2, if the mean Landsberg curvature and the Berwald scalar curvature both vanish, then the Berwald curvature also vanishes.

Keywords

Landsberg curvature / Berwald curvature / E-curvature / S-curvature Berwald scalar curvature

Cite this article

Download citation ▾
Ming LI, Lihong ZHANG. Properties of Berwald scalar curvature. Front. Math. China, 2020, 15(6): 1143‒1153 https://doi.org/10.1007/s11464-020-0872-7

References

[1]
Bao D, Chern S-S, Shen Z. An Introduction to Riemann-Finsler Geometry. Berlin: Springer-Verlag, 2000
CrossRef Google scholar
[2]
Chen G, He Q, Pan S. On weak Berwald (α, β)-metrics of scalar flag curvature. J Geom Phys, 2014, 86: 112–121
CrossRef Google scholar
[3]
Chern S-S, Shen Z. Riemann-Finsler Geometry. Singapore: World Scientific, 2005
CrossRef Google scholar
[4]
Crampin M. A condition for a Landsberg space to be Berwaldian. Publ Math Debrecen, 2018, 93(1-2): 143–155
CrossRef Google scholar
[5]
Feng H, Li M. Adiabatic limit and connections in Finsler geometry. Comm Anal Geom, 2013, 21(3): 607–624
CrossRef Google scholar
[6]
Li M. Equivalence theorems of Minkowski spaces and applications in Finsler geometry. Acta Math Sinica (Chin Ser), 2019, 62(2): 177–190 (in Chinese)
[7]
Mo X. An Introduction to Finsler Geometry. Singapore: World Scientific, 2006
CrossRef Google scholar
[8]
Schneider R. Zur affnen differential geometrie im Groen. I. Math Z, 1967, 101: 375–406
CrossRef Google scholar
[9]
Shen Y, Shen Z. Introduction to Modern Finsler Geometry. Singapore: World Scientific, 2016
CrossRef Google scholar
[10]
Shen Z. Volume comparison and its applications in Riemann-Finsler geometry. Adv Math, 1997, 128(2): 306–328
CrossRef Google scholar
[11]
Shen Z. Differential Geometry of Spray and Finsler Spaces. Dordrecht: Springer, 2001
CrossRef Google scholar
[12]
Shen Z. Lectures on Finsler Geometry. Singapore: World Scientific, 2001
CrossRef Google scholar
[13]
Shen Z. Landsberg curvature, S-curvature and Riemann curvature. In: Bao D, Bryant R L, Chern S-S, Shen Z M, eds. A Sampler of Riemann-Finsler Geometry. Math Sci Res Inst Publ, Vol 50. Cambridge: Cambridge Univ Press, 2004, 303–355
[14]
Simon V, Schellschmidt S, Viesel H. Introduction to the Affine Differential Geometry of Hypersurfaces. Tokyo: Science Univ Tokyo, 1991
[15]
Zhang W. Lectures on Chern-Weil Theory andWitten Deformations. Singapore: World Scientific,2001
CrossRef Google scholar
[16]
Zou Y, Cheng X. The generalized unicorn problem on (α, β)-metrics. J Math Anal Appl, 2014, 414(2): 574–589
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(296 KB)

Accesses

Citations

Detail

Sections
Recommended

/