RESEARCH ARTICLE

Local regularity properties for 1D mixed nonlinear Schrödinger equations on half-line

  • Boling GUO 1 ,
  • Jun WU , 2
Expand
  • 1. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • 2. Graduate School of China Academy of Engineering Physics, Beijing 100088, China

Received date: 26 Jun 2020

Accepted date: 17 Nov 2020

Published date: 15 Dec 2020

Copyright

2020 Higher Education Press

Abstract

The main purpose of this paper is to consider the initial-boundary value problem for the 1D mixed nonlinear Schrödinger equation ut=iαuxx+βu2ux+γ|u|2ux+i|u|2u on the half-line with inhomogeneous boundary condition. We combine Laplace transform method with restricted norm method to prove the local well-posedness and continuous dependence on initial and boundary data in low regularity Sobolev spaces. Moreover, we show that the nonlinear part of the solution on the half-line is smoother than the initial data.

Cite this article

Boling GUO , Jun WU . Local regularity properties for 1D mixed nonlinear Schrödinger equations on half-line[J]. Frontiers of Mathematics in China, 2020 , 15(6) : 1121 -1142 . DOI: 10.1007/s11464-020-0878-1

1
Bona J L, Sun S M, Zhang B Y. A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. Comm Partial Differential Equations, 2003, 28(7-8): 1391–1436

DOI

2
Bona J L, Sun S M, Zhang B Y. Boundary smoothing properties of the Kortewegde Vries equation in a quarter plane and applications. Dyn Partial Differ Equ, 2006, 3(1): 1–70

DOI

3
Bona J L, Sun S M,Zhang B Y. Nonhomogeneous boundary-value problems for onedimensional nonlinear Schrödinger equations. J Math Pures Appl, 2018, 109: 1–66

DOI

4
Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schr?odinger equations. Geom Funct Anal, 1993, 3: 107–156

DOI

5
Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation. Geom Funct Anal, 1993, 3: 209–262

DOI

6
Capistrano-Filho R A, Cavalcante M. Stabilization and control for the biharmonic Schrödinger equation. Appl Math Optim, 2019, doi.org/10.1007/s00245-019-09640-8

DOI

7
Chen Y M. The initial-boundary value problem for a class of nonlinear Schr?odinger equations. Acta Math Sci Ser B Engl Ed, 1986, 6(4): 405–418

DOI

8
Chirst F M, Weinstein M I. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J Funct Anal, 1991, 100(1): 87–109

DOI

9
Colliander J E, Kenig C E. The generalized Korteweg-de Vries equation on the half line. Comm Partial Differential Equations, 2002, 27(11-12): 2187–2266

DOI

10
Erdoğan M B, Tzirakis N. Regularity properties of the cubic nonlinear Schrödinger equation on the half line. J Funct Anal, 2016, 271(9): 2539–2568

DOI

11
Faminskii A V. Control problems with an integral condition for Korteweg-de Vries equation on unbounded domains. J Optim Theory Appl, 2019, 180: 290–302

DOI

12
Fokas A S. A unified transform method for solving linear and certain nonlinear PDEs. Proc R Soc Lond A, 1997, 453: 1411–1443

DOI

13
Fokas A S, Athanassios S, Himonas A A, Alexandrou A, Mantzavinos D. The Kortewegde Vries equation on the half-line. Nonlinearity, 2016, 29(2): 489–527

DOI

14
Guo B L, Tan S B.On smooth solutions to the initial value problem for the mixed nonlinear Schrödinger equations. Proc Roy Soc Edinburgh Sect A, 1991, 119(1-2): 31–45

DOI

15
Holmer J. The initial-boundary value problem for the 1D nonlinear Schrödinger equation on the half-line. Differential Integral Equations, 2005, 18(6): 647–668

16
Holmer J. The initial-boundary value problem for Korteweg-de Vries equation. Comm Partial Differential Equations, 2006, 31(8): 1151–1190

DOI

17
Jerison D, Kenig C E. The inhomogeneous Dirichlet problem in Lipschitz domains. J Funct Anal, 1995, 130(1): 161–219

DOI

18
Kenig C E, Ponce G, Vega L. Oscillatory integrals and regularity of dispersive equations. Indiana Univ Math J, 1991, 40(1): 33–69

DOI

19
Takaoka H. Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity. Adv Differential Equations, 1999, 4: 561{580

20
Tsutsumi M, Fukuda I.On solutions of the derivative nonlinear Schrödinger equation. Funkcial Ekvac, 1980, 23(3): 259–277

Outlines

/