Local regularity properties for 1D mixed nonlinear Schrödinger equations on half-line

Boling GUO , Jun WU

Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1121 -1142.

PDF (317KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1121 -1142. DOI: 10.1007/s11464-020-0878-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Local regularity properties for 1D mixed nonlinear Schrödinger equations on half-line

Author information +
History +
PDF (317KB)

Abstract

The main purpose of this paper is to consider the initial-boundary value problem for the 1D mixed nonlinear Schrödinger equation ut=iαuxx+βu2ux+γ|u|2ux+i|u|2u on the half-line with inhomogeneous boundary condition. We combine Laplace transform method with restricted norm method to prove the local well-posedness and continuous dependence on initial and boundary data in low regularity Sobolev spaces. Moreover, we show that the nonlinear part of the solution on the half-line is smoother than the initial data.

Keywords

Mixed nonlinear Schrödinger (MNLS) equations / initial-boundary value problem (IBVP) / Bourgain spaces / local well-posedness

Cite this article

Download citation ▾
Boling GUO, Jun WU. Local regularity properties for 1D mixed nonlinear Schrödinger equations on half-line. Front. Math. China, 2020, 15(6): 1121-1142 DOI:10.1007/s11464-020-0878-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bona J L, Sun S M, Zhang B Y. A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. Comm Partial Differential Equations, 2003, 28(7-8): 1391–1436

[2]

Bona J L, Sun S M, Zhang B Y. Boundary smoothing properties of the Kortewegde Vries equation in a quarter plane and applications. Dyn Partial Differ Equ, 2006, 3(1): 1–70

[3]

Bona J L, Sun S M,Zhang B Y. Nonhomogeneous boundary-value problems for onedimensional nonlinear Schrödinger equations. J Math Pures Appl, 2018, 109: 1–66

[4]

Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schr?odinger equations. Geom Funct Anal, 1993, 3: 107–156

[5]

Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation. Geom Funct Anal, 1993, 3: 209–262

[6]

Capistrano-Filho R A, Cavalcante M. Stabilization and control for the biharmonic Schrödinger equation. Appl Math Optim, 2019, doi.org/10.1007/s00245-019-09640-8

[7]

Chen Y M. The initial-boundary value problem for a class of nonlinear Schr?odinger equations. Acta Math Sci Ser B Engl Ed, 1986, 6(4): 405–418

[8]

Chirst F M, Weinstein M I. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J Funct Anal, 1991, 100(1): 87–109

[9]

Colliander J E, Kenig C E. The generalized Korteweg-de Vries equation on the half line. Comm Partial Differential Equations, 2002, 27(11-12): 2187–2266

[10]

Erdoğan M B, Tzirakis N. Regularity properties of the cubic nonlinear Schrödinger equation on the half line. J Funct Anal, 2016, 271(9): 2539–2568

[11]

Faminskii A V. Control problems with an integral condition for Korteweg-de Vries equation on unbounded domains. J Optim Theory Appl, 2019, 180: 290–302

[12]

Fokas A S. A unified transform method for solving linear and certain nonlinear PDEs. Proc R Soc Lond A, 1997, 453: 1411–1443

[13]

Fokas A S, Athanassios S, Himonas A A, Alexandrou A, Mantzavinos D. The Kortewegde Vries equation on the half-line. Nonlinearity, 2016, 29(2): 489–527

[14]

Guo B L, Tan S B.On smooth solutions to the initial value problem for the mixed nonlinear Schrödinger equations. Proc Roy Soc Edinburgh Sect A, 1991, 119(1-2): 31–45

[15]

Holmer J. The initial-boundary value problem for the 1D nonlinear Schrödinger equation on the half-line. Differential Integral Equations, 2005, 18(6): 647–668

[16]

Holmer J. The initial-boundary value problem for Korteweg-de Vries equation. Comm Partial Differential Equations, 2006, 31(8): 1151–1190

[17]

Jerison D, Kenig C E. The inhomogeneous Dirichlet problem in Lipschitz domains. J Funct Anal, 1995, 130(1): 161–219

[18]

Kenig C E, Ponce G, Vega L. Oscillatory integrals and regularity of dispersive equations. Indiana Univ Math J, 1991, 40(1): 33–69

[19]

Takaoka H. Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity. Adv Differential Equations, 1999, 4: 561{580

[20]

Tsutsumi M, Fukuda I.On solutions of the derivative nonlinear Schrödinger equation. Funkcial Ekvac, 1980, 23(3): 259–277

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (317KB)

637

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/