RESEARCH ARTICLE

Strong convergence rate of principle of averaging for jump-diffusion processes

  • Di LIU
Expand
  • Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

Received date: 16 Jan 2011

Accepted date: 06 Sep 2011

Published date: 01 Apr 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We study jump-diffusion processes with two well-separated time scales. It is proved that the rate of strong convergence to the averaged effective dynamics is of order O(ϵ1/2), where ϵ1 is the parameter measuring the disparity of the time scales in the system. The convergence rate is shown to be optimal through examples. The result sheds light on the designing of efficient numerical methods for multiscale stochastic dynamics.

Cite this article

Di LIU . Strong convergence rate of principle of averaging for jump-diffusion processes[J]. Frontiers of Mathematics in China, 2012 , 7(2) : 305 -320 . DOI: 10.1007/s11464-012-0193-6

1
E W, Engquist B. The heterogeneous multiscale methods. Commun Math Sci, 2003, 1(1): 87-133

2
E W, Liu D, Vanden-Eijnden E. Analysis of multiscale methods for stochastic differential equations. Commun Pure Appl Math, 2005, 58(11): 1544-1585

DOI

3
Freidlin M I, Wentzell A D. Random Perturbations of Dynamical Systems. 2nd ed. New York: Springer-Verlag, 1998

DOI

4
Givon D. Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. SIAM Mul Mod Simu, 2007, 6: 577-594

DOI

5
Givon D, Kevrekidis I G, Kupferman R. Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems. Commun Math Sci, 2006, 4(4): 707-729

6
Khasminskii R Z. Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion. Theory Probab Appl, 1963, 8: 1-21

DOI

7
Khasminskii R Z. Stochastic Stability of Differential Equations. Alphen aan den Rijn: Sijthoff & Noordhoff, 1980

8
Khasminskii R Z, Yin G. On averaging principles: An asymptotic expansion approach. SIAM J Math Anal, 2004, 35(6): 1534-1560, 2004

9
Kifer Y. Stochastic versions of Anosov and Neistadt theorems on averaging. Stoch Dyn, 2001, 1(1): 1-21

DOI

10
Kushner H J. Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, 3, Systems & Control: Foundations & Applications. Boston: Birkhäuser, 1990

11
Liu D. Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun Math Sci, 2010, 8: 999-1020

12
Liu D. Analysis of multiscale methods for stochastic dynamical systems with multiple time scales. SIAM Mul Mod Simu, 2010, 8: 944-964

DOI

13
Menaldi J L, Robin M. Invariant measure for diffusions with jumps. Appl Math Optim, 1999, 40: 105-140

DOI

14
Meyn S P, Tweedie R L. Stability of Markovian processes, I. Adv Appl Probab, 1992, 24(3): 542-574

DOI

15
Meyn S P, Tweedie R L. Stability of Markovian processes, II. Adv Appl Probab, 1993, 25(3): 487-517

DOI

16
Meyn S P, Tweedie R L. Stability of Markovian processes, III. Adv Appl Probab, 1993, 25(3): 518-548

DOI

17
Vanden-Eijnden E. Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun Math Sci, 2003, 1: 377-384

18
Veretennikov A Yu. On an averaging principle for systems of stochastic differential equations. Math Sbornik, 1990, 181(2): 256-268

Options
Outlines

/