Strong convergence rate of principle of averaging for jump-diffusion processes

Di Liu

Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 305-320.

PDF(184 KB)
Front. Math. China All Journals
PDF(184 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 305-320. DOI: 10.1007/s11464-012-0193-6
Research Article
RESEARCH ARTICLE

Strong convergence rate of principle of averaging for jump-diffusion processes

Author information +
History +

Abstract

We study jump-diffusion processes with two well-separated time scales. It is proved that the rate of strong convergence to the averaged effective dynamics is of order O(ɛ1/2), where ɛ ≪ 1 is the parameter measuring the disparity of the time scales in the system. The convergence rate is shown to be optimal through examples. The result sheds light on the designing of efficient numerical methods for multiscale stochastic dynamics.

Keywords

Stochastic differential equation / time scale separation / averaging of perturbations

Cite this article

Download citation ▾
Di Liu. Strong convergence rate of principle of averaging for jump-diffusion processes. Front. Math. China, 2012, 7(2): 305‒320 https://doi.org/10.1007/s11464-012-0193-6
This is a preview of subscription content, contact us for subscripton.

References

[1.]
E W., Engquist B. The heterogeneous multiscale methods. Commun Math Sci, 2003, 1(1): 87-133
[2.]
E W., Liu D., Vanden-Eijnden E. Analysis of multiscale methods for stochastic differential equations. Commun Pure Appl Math, 2005, 58(11): 1544-1585
CrossRef Google scholar
[3.]
Freidlin M. I., Wentzell A. D. Random Perturbations of Dynamical Systems, 1998 2nd ed. New York: Springer-Verlag
CrossRef Google scholar
[4.]
Givon D. Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. SIAM Mul Mod Simu, 2007, 6: 577-594
CrossRef Google scholar
[5.]
Givon D., Kevrekidis I. G., Kupferman R. Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems. Commun Math Sci, 2006, 4(4): 707-729
[6.]
Khasminskii R. Z. Principle of averaging for parabolic and elliptic differential equations and for Markov processes with small diffusion. Theory Probab Appl, 1963, 8: 1-21
CrossRef Google scholar
[7.]
Khasminskii R Z. Stochastic Stability of Differential Equations. Alphen aan den Rijn: Sijthoff & Noordhoff, 1980
[8.]
Khasminskii R. Z., Yin G. On averaging principles: An asymptotic expansion approach. SIAM J Math Anal, 2004, 35(6): 1534-1560
CrossRef Google scholar
[9.]
Kifer Y. Stochastic versions of Anosov and Neistadt theorems on averaging. Stoch Dyn, 2001, 1(1): 1-21
CrossRef Google scholar
[10.]
Kushner H. J. Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, 3, Systems & Control: Foundations & Applications, 1990, Boston: Birkhäuser
CrossRef Google scholar
[11.]
Liu D. Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun Math Sci, 2010, 8: 999-1020
[12.]
Liu D. Analysis of multiscale methods for stochastic dynamical systems with multiple time scales. SIAM Mul Mod Simu, 2010, 8: 944-964
CrossRef Google scholar
[13.]
Menaldi J. L., Robin M. Invariant measure for diffusions with jumps. Appl Math Optim, 1999, 40: 105-140
CrossRef Google scholar
[14.]
Meyn S. P., Tweedie R. L. Stability of Markovian processes, I. Adv Appl Probab, 1992, 24(3): 542-574
CrossRef Google scholar
[15.]
Meyn S. P., Tweedie R. L. Stability of Markovian processes, II. Adv Appl Probab, 1993, 25(3): 487-517
CrossRef Google scholar
[16.]
Meyn S. P., Tweedie R. L. Stability of Markovian processes, III. Adv Appl Probab, 1993, 25(3): 518-548
CrossRef Google scholar
[17.]
Vanden-Eijnden E. Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun Math Sci, 2003, 1: 377-384
[18.]
Veretennikov A. Yu. On an averaging principle for systems of stochastic differential equations. Math Sbornik, 1990, 181(2): 256-268
AI Summary AI Mindmap
PDF(184 KB)

835

Accesses

12

Citations

Detail

Sections
Recommended

/