RESEARCH ARTICLE

General techniques for constructing variational integrators

  • Melvin LEOK ,
  • Tatiana SHINGEL
Expand
  • Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

Received date: 14 Feb 2011

Accepted date: 21 Dec 2011

Published date: 01 Apr 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton–Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.

Cite this article

Melvin LEOK , Tatiana SHINGEL . General techniques for constructing variational integrators[J]. Frontiers of Mathematics in China, 2012 , 7(2) : 273 -303 . DOI: 10.1007/s11464-012-0190-9

1
Benettin G, Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys, 1994, 74: 1117-1143

DOI

2
Bou-Rabee N, Owhadi H. Stochastic variational integrators. IMA J Numer Anal, 2009, 29(2): 421-443

DOI

3
Cortés J, Mart´ınez S. Non-holonomic integrators. Nonlinearity, 2001, 14(5): 1365-1392

DOI

4
Cuell C, Patrick G. Geometric discrete analogues of tangent bundles and constrained Lagrangian systems. J Geom Phys, 2009, 59(7): 976-997

DOI

5
Fetecau R, Marsden J, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems, 2003, 2(3): 381-416

DOI

6
Hairer E. Backward analysis of numerical integrators and symplectic methods. Scientific Computation and Differential Equations (Auckland, 1993). Ann Numer Math, 1994, 1(1-4): 107-132

7
Hairer E, Lubich C. The life-span of backward error analysis for numerical integrators. Numer Math, 1997, 76: 441-462

DOI

8
Hairer E, Lubich C, Wanner G. Geometric Numerical Integration. 2nd ed. Springer Series in Computational Mathematics, Vol 31. Berlin: Springer-Verlag, 2006

9
Iserles A, Munthe-Kaas H, Nørsett S, Zanna A. Lie-group methods. In: Acta Numerica, Vol 9. Cambridge: Cambridge University Press, 2000, 215-365

10
Kahan W. Further remarks on reducing truncation errors. Commun ACM, 1965, 8: 40

DOI

11
Keller H B. Numerical methods for two-point boundary value problems. New York: Dover Publications Inc, 1992

12
Lall S, West M. Discrete variational Hamiltonian mechanics. J Phys A, 2006, 39(19): 5509-5519

DOI

13
Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem. Comput Methods Appl Mech Engrg, 2007, 196(29-30): 2907-2924

DOI

14
Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mech Dynam Astronom, 2007, 98(2): 121-144

DOI

15
Lee T, Leok M, McClamroch N. Lagrangian mechanics and variational integrators on two-spheres. Int J Numer Methods Eng, 2009, 79(9): 1147-1174

DOI

16
Leok M. Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods. Preprint, 2004, arXiv: math.NA/0508360

17
Leok M, Shingel T. Prolongation-collocation variational integrators. IMA J Numer Anal (in press), arXiv: 1101.1995 [math.NA]

18
18. Leok M, Zhang J. Discrete Hamiltonian variational integrators. IMA J Numer Anal, 2011, 31(4): 1497-1532

DOI

19
Lew A, Marsden J E, Ortiz M, West M. Asynchronous variational integrators. Arch Ration Mech Anal, 2003, 167(2): 85-146

DOI

20
Leyendecker S, Marsden J, Ortiz M. Variational integrators for constrained mechanical systems. Z Angew Math Mech, 2008, 88: 677-708

DOI

21
Marsden J, Pekarsky S, Shkoller S. Discrete Euler–Poincaré and Lie–Poisson equations. Nonlinearity, 1999, 12(6): 1647-1662

DOI

22
Marsden J E, West M. Discrete mechanics and variational integrators. Acta Numer, 2001, 10: 357-514

DOI

23
Oliver M, West M, Wulff C. Approximate momentum conservation for spatial semidiscretizations of nonlinear wave equations. Numer Math, 2004, 97: 493-535

DOI

24
Patrick G, Spiteri R, Zhang W, Cuell C. On converting any one-step method to a variational integrator of the same order. In: 7th International Conference on Multibody systems, Nonlinear Dynamics, and Control, Vol 4. 2009, 341-349

25
Reich S. Backward error analysis for numerical integrators. SIAM J Numer Anal, 1999, 36: 1549-1570

DOI

26
Stern A, Grinspun E. Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model Simul, 2009, 7(4): 1779-1794

DOI

Options
Outlines

/