Frontiers of Mathematics in China >
General techniques for constructing variational integrators
Received date: 14 Feb 2011
Accepted date: 21 Dec 2011
Published date: 01 Apr 2012
Copyright
The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton–Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.
Melvin LEOK , Tatiana SHINGEL . General techniques for constructing variational integrators[J]. Frontiers of Mathematics in China, 2012 , 7(2) : 273 -303 . DOI: 10.1007/s11464-012-0190-9
1 |
Benettin G, Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys, 1994, 74: 1117-1143
|
2 |
Bou-Rabee N, Owhadi H. Stochastic variational integrators. IMA J Numer Anal, 2009, 29(2): 421-443
|
3 |
Cortés J, Mart´ınez S. Non-holonomic integrators. Nonlinearity, 2001, 14(5): 1365-1392
|
4 |
Cuell C, Patrick G. Geometric discrete analogues of tangent bundles and constrained Lagrangian systems. J Geom Phys, 2009, 59(7): 976-997
|
5 |
Fetecau R, Marsden J, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems, 2003, 2(3): 381-416
|
6 |
Hairer E. Backward analysis of numerical integrators and symplectic methods. Scientific Computation and Differential Equations (Auckland, 1993). Ann Numer Math, 1994, 1(1-4): 107-132
|
7 |
Hairer E, Lubich C. The life-span of backward error analysis for numerical integrators. Numer Math, 1997, 76: 441-462
|
8 |
Hairer E, Lubich C, Wanner G. Geometric Numerical Integration. 2nd ed. Springer Series in Computational Mathematics, Vol 31. Berlin: Springer-Verlag, 2006
|
9 |
Iserles A, Munthe-Kaas H, Nørsett S, Zanna A. Lie-group methods. In: Acta Numerica, Vol 9. Cambridge: Cambridge University Press, 2000, 215-365
|
10 |
Kahan W. Further remarks on reducing truncation errors. Commun ACM, 1965, 8: 40
|
11 |
Keller H B. Numerical methods for two-point boundary value problems. New York: Dover Publications Inc, 1992
|
12 |
Lall S, West M. Discrete variational Hamiltonian mechanics. J Phys A, 2006, 39(19): 5509-5519
|
13 |
Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem. Comput Methods Appl Mech Engrg, 2007, 196(29-30): 2907-2924
|
14 |
Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mech Dynam Astronom, 2007, 98(2): 121-144
|
15 |
Lee T, Leok M, McClamroch N. Lagrangian mechanics and variational integrators on two-spheres. Int J Numer Methods Eng, 2009, 79(9): 1147-1174
|
16 |
Leok M. Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods. Preprint, 2004, arXiv: math.NA/0508360
|
17 |
Leok M, Shingel T. Prolongation-collocation variational integrators. IMA J Numer Anal (in press), arXiv: 1101.1995 [math.NA]
|
18 |
18. Leok M, Zhang J. Discrete Hamiltonian variational integrators. IMA J Numer Anal, 2011, 31(4): 1497-1532
|
19 |
Lew A, Marsden J E, Ortiz M, West M. Asynchronous variational integrators. Arch Ration Mech Anal, 2003, 167(2): 85-146
|
20 |
Leyendecker S, Marsden J, Ortiz M. Variational integrators for constrained mechanical systems. Z Angew Math Mech, 2008, 88: 677-708
|
21 |
Marsden J, Pekarsky S, Shkoller S. Discrete Euler–Poincaré and Lie–Poisson equations. Nonlinearity, 1999, 12(6): 1647-1662
|
22 |
Marsden J E, West M. Discrete mechanics and variational integrators. Acta Numer, 2001, 10: 357-514
|
23 |
Oliver M, West M, Wulff C. Approximate momentum conservation for spatial semidiscretizations of nonlinear wave equations. Numer Math, 2004, 97: 493-535
|
24 |
Patrick G, Spiteri R, Zhang W, Cuell C. On converting any one-step method to a variational integrator of the same order. In: 7th International Conference on Multibody systems, Nonlinear Dynamics, and Control, Vol 4. 2009, 341-349
|
25 |
Reich S. Backward error analysis for numerical integrators. SIAM J Numer Anal, 1999, 36: 1549-1570
|
26 |
Stern A, Grinspun E. Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model Simul, 2009, 7(4): 1779-1794
|
/
〈 | 〉 |