General techniques for constructing variational integrators

Melvin Leok , Tatiana Shingel

Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 273 -303.

PDF (425KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 273 -303. DOI: 10.1007/s11464-012-0190-9
Research Article
RESEARCH ARTICLE

General techniques for constructing variational integrators

Author information +
History +
PDF (425KB)

Abstract

The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton-Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.

Keywords

Geometric numerical integration / geometric mechanics / symplectic integrator / variational integrator / Lagrangian mechanics

Cite this article

Download citation ▾
Melvin Leok, Tatiana Shingel. General techniques for constructing variational integrators. Front. Math. China, 2012, 7(2): 273-303 DOI:10.1007/s11464-012-0190-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benettin G., Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys, 1994, 74: 1117-1143

[2]

Bou-Rabee N., Owhadi H. Stochastic variational integrators. IMA J Numer Anal, 2009, 29(2): 421-443

[3]

Cortés J., Martínez S. Non-holonomic integrators. Nonlinearity, 2001, 14(5): 1365-1392

[4]

Cuell C., Patrick G. Geometric discrete analogues of tangent bundles and constrained Lagrangian systems. J Geom Phys, 2009, 59(7): 976-997

[5]

Fetecau R., Marsden J., Ortiz M., West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems, 2003, 2(3): 381-416

[6]

Hairer E. Backward analysis of numerical integrators and symplectic methods. Scientific Computation and Differential Equations (Auckland, 1993). Ann Numer Math, 1994, 1(1–4): 107-132

[7]

Hairer E., Lubich C. The life-span of backward error analysis for numerical integrators. Numer Math, 1997, 76: 441-462

[8]

Hairer E., Lubich C., Wanner G. Geometric Numerical Integration, 2006 2nd ed. Berlin: Springer-Verlag

[9]

Iserles A., Munthe-Kaas H., Nørsett S., Zanna A. Lie-group methods. Acta Numerica, Vol 9, 2000, Cambridge: Cambridge University Press, 215-365

[10]

Kahan W. Further remarks on reducing truncation errors. Commun ACM, 1965, 8: 40

[11]

Keller H. B. Numerical methods for two-point boundary value problems, 1992, New York: Dover Publications Inc

[12]

Lall S., West M. Discrete variational Hamiltonian mechanics. J Phys A, 2006, 39(19): 5509-5519

[13]

Lee T., Leok M., McClamroch N. Lie group variational integrators for the full body problem. Comput Methods Appl Mech Engrg, 2007, 196(29–30): 2907-2924

[14]

Lee T., Leok M., McClamroch N. Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mech Dynam Astronom, 2007, 98(2): 121-144

[15]

Lee T., Leok M., McClamroch N. Lagrangian mechanics and variational integrators on two-spheres. Int J Numer Methods Eng, 2009, 79(9): 1147-1174

[16]

Leok M. Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods. Preprint, 2004, arXiv: math.NA/0508360

[17]

Leok M, Shingel T. Prolongation-collocation variational integrators. IMA J Numer Anal (in press), arXiv: 1101.1995 [math.NA]

[18]

Leok M., Zhang J. Discrete Hamiltonian variational integrators. IMA J Numer Anal, 2011, 31(4): 1497-1532

[19]

Lew A., Marsden J. E., Ortiz M., West M. Asynchronous variational integrators. Arch Ration Mech Anal, 2003, 167(2): 85-146

[20]

Leyendecker S., Marsden J., Ortiz M. Variational integrators for constrained mechanical systems. Z Angew Math Mech, 2008, 88: 677-708

[21]

Marsden J., Pekarsky S., Shkoller S. Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity, 1999, 12(6): 1647-1662

[22]

Marsden J. E., West M. Discrete mechanics and variational integrators. Acta Numer, 2001, 10: 357-514

[23]

Oliver M., West M., Wulff C. Approximate momentum conservation for spatial semidiscretizations of nonlinear wave equations. Numer Math, 2004, 97: 493-535

[24]

Patrick G., Spiteri R., Zhang W., Cuell C. On converting any one-step method to a variational integrator of the same order. 7th International Conference on Multibody systems, Nonlinear Dynamics, and Control, 2009, 4: 341-349

[25]

Reich S. Backward error analysis for numerical integrators. SIAM J Numer Anal, 1999, 36: 1549-1570

[26]

Stern A., Grinspun E. Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model Simul, 2009, 7(4): 1779-1794

AI Summary AI Mindmap
PDF (425KB)

1240

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/