PDF
(425KB)
Abstract
The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton-Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.
Keywords
Geometric numerical integration
/
geometric mechanics
/
symplectic integrator
/
variational integrator
/
Lagrangian mechanics
Cite this article
Download citation ▾
Melvin Leok, Tatiana Shingel.
General techniques for constructing variational integrators.
Front. Math. China, 2012, 7(2): 273-303 DOI:10.1007/s11464-012-0190-9
| [1] |
Benettin G., Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys, 1994, 74: 1117-1143
|
| [2] |
Bou-Rabee N., Owhadi H. Stochastic variational integrators. IMA J Numer Anal, 2009, 29(2): 421-443
|
| [3] |
Cortés J., Martínez S. Non-holonomic integrators. Nonlinearity, 2001, 14(5): 1365-1392
|
| [4] |
Cuell C., Patrick G. Geometric discrete analogues of tangent bundles and constrained Lagrangian systems. J Geom Phys, 2009, 59(7): 976-997
|
| [5] |
Fetecau R., Marsden J., Ortiz M., West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems, 2003, 2(3): 381-416
|
| [6] |
Hairer E. Backward analysis of numerical integrators and symplectic methods. Scientific Computation and Differential Equations (Auckland, 1993). Ann Numer Math, 1994, 1(1–4): 107-132
|
| [7] |
Hairer E., Lubich C. The life-span of backward error analysis for numerical integrators. Numer Math, 1997, 76: 441-462
|
| [8] |
Hairer E., Lubich C., Wanner G. Geometric Numerical Integration, 2006 2nd ed. Berlin: Springer-Verlag
|
| [9] |
Iserles A., Munthe-Kaas H., Nørsett S., Zanna A. Lie-group methods. Acta Numerica, Vol 9, 2000, Cambridge: Cambridge University Press, 215-365
|
| [10] |
Kahan W. Further remarks on reducing truncation errors. Commun ACM, 1965, 8: 40
|
| [11] |
Keller H. B. Numerical methods for two-point boundary value problems, 1992, New York: Dover Publications Inc
|
| [12] |
Lall S., West M. Discrete variational Hamiltonian mechanics. J Phys A, 2006, 39(19): 5509-5519
|
| [13] |
Lee T., Leok M., McClamroch N. Lie group variational integrators for the full body problem. Comput Methods Appl Mech Engrg, 2007, 196(29–30): 2907-2924
|
| [14] |
Lee T., Leok M., McClamroch N. Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mech Dynam Astronom, 2007, 98(2): 121-144
|
| [15] |
Lee T., Leok M., McClamroch N. Lagrangian mechanics and variational integrators on two-spheres. Int J Numer Methods Eng, 2009, 79(9): 1147-1174
|
| [16] |
Leok M. Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods. Preprint, 2004, arXiv: math.NA/0508360
|
| [17] |
Leok M, Shingel T. Prolongation-collocation variational integrators. IMA J Numer Anal (in press), arXiv: 1101.1995 [math.NA]
|
| [18] |
Leok M., Zhang J. Discrete Hamiltonian variational integrators. IMA J Numer Anal, 2011, 31(4): 1497-1532
|
| [19] |
Lew A., Marsden J. E., Ortiz M., West M. Asynchronous variational integrators. Arch Ration Mech Anal, 2003, 167(2): 85-146
|
| [20] |
Leyendecker S., Marsden J., Ortiz M. Variational integrators for constrained mechanical systems. Z Angew Math Mech, 2008, 88: 677-708
|
| [21] |
Marsden J., Pekarsky S., Shkoller S. Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity, 1999, 12(6): 1647-1662
|
| [22] |
Marsden J. E., West M. Discrete mechanics and variational integrators. Acta Numer, 2001, 10: 357-514
|
| [23] |
Oliver M., West M., Wulff C. Approximate momentum conservation for spatial semidiscretizations of nonlinear wave equations. Numer Math, 2004, 97: 493-535
|
| [24] |
Patrick G., Spiteri R., Zhang W., Cuell C. On converting any one-step method to a variational integrator of the same order. 7th International Conference on Multibody systems, Nonlinear Dynamics, and Control, 2009, 4: 341-349
|
| [25] |
Reich S. Backward error analysis for numerical integrators. SIAM J Numer Anal, 1999, 36: 1549-1570
|
| [26] |
Stern A., Grinspun E. Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model Simul, 2009, 7(4): 1779-1794
|