General techniques for constructing variational integrators
Melvin LEOK, Tatiana SHINGEL
General techniques for constructing variational integrators
The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton–Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.
Geometric numerical integration / geometric mechanics / symplectic integrator / variational integrator / Lagrangian mechanics
[1] |
Benettin G, Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys, 1994, 74: 1117-1143
CrossRef
Google scholar
|
[2] |
Bou-Rabee N, Owhadi H. Stochastic variational integrators. IMA J Numer Anal, 2009, 29(2): 421-443
CrossRef
Google scholar
|
[3] |
Cortés J, Mart´ınez S. Non-holonomic integrators. Nonlinearity, 2001, 14(5): 1365-1392
CrossRef
Google scholar
|
[4] |
Cuell C, Patrick G. Geometric discrete analogues of tangent bundles and constrained Lagrangian systems. J Geom Phys, 2009, 59(7): 976-997
CrossRef
Google scholar
|
[5] |
Fetecau R, Marsden J, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems, 2003, 2(3): 381-416
CrossRef
Google scholar
|
[6] |
Hairer E. Backward analysis of numerical integrators and symplectic methods. Scientific Computation and Differential Equations (Auckland, 1993). Ann Numer Math, 1994, 1(1-4): 107-132
|
[7] |
Hairer E, Lubich C. The life-span of backward error analysis for numerical integrators. Numer Math, 1997, 76: 441-462
CrossRef
Google scholar
|
[8] |
Hairer E, Lubich C, Wanner G. Geometric Numerical Integration. 2nd ed. Springer Series in Computational Mathematics, Vol 31. Berlin: Springer-Verlag, 2006
|
[9] |
Iserles A, Munthe-Kaas H, Nørsett S, Zanna A. Lie-group methods. In: Acta Numerica, Vol 9. Cambridge: Cambridge University Press, 2000, 215-365
|
[10] |
Kahan W. Further remarks on reducing truncation errors. Commun ACM, 1965, 8: 40
CrossRef
Google scholar
|
[11] |
Keller H B. Numerical methods for two-point boundary value problems. New York: Dover Publications Inc, 1992
|
[12] |
Lall S, West M. Discrete variational Hamiltonian mechanics. J Phys A, 2006, 39(19): 5509-5519
CrossRef
Google scholar
|
[13] |
Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem. Comput Methods Appl Mech Engrg, 2007, 196(29-30): 2907-2924
CrossRef
Google scholar
|
[14] |
Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mech Dynam Astronom, 2007, 98(2): 121-144
CrossRef
Google scholar
|
[15] |
Lee T, Leok M, McClamroch N. Lagrangian mechanics and variational integrators on two-spheres. Int J Numer Methods Eng, 2009, 79(9): 1147-1174
CrossRef
Google scholar
|
[16] |
Leok M. Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods. Preprint, 2004, arXiv: math.NA/0508360
|
[17] |
Leok M, Shingel T. Prolongation-collocation variational integrators. IMA J Numer Anal (in press), arXiv: 1101.1995 [math.NA]
|
[18] |
18. Leok M, Zhang J. Discrete Hamiltonian variational integrators. IMA J Numer Anal, 2011, 31(4): 1497-1532
CrossRef
Google scholar
|
[19] |
Lew A, Marsden J E, Ortiz M, West M. Asynchronous variational integrators. Arch Ration Mech Anal, 2003, 167(2): 85-146
CrossRef
Google scholar
|
[20] |
Leyendecker S, Marsden J, Ortiz M. Variational integrators for constrained mechanical systems. Z Angew Math Mech, 2008, 88: 677-708
CrossRef
Google scholar
|
[21] |
Marsden J, Pekarsky S, Shkoller S. Discrete Euler–Poincaré and Lie–Poisson equations. Nonlinearity, 1999, 12(6): 1647-1662
CrossRef
Google scholar
|
[22] |
Marsden J E, West M. Discrete mechanics and variational integrators. Acta Numer, 2001, 10: 357-514
CrossRef
Google scholar
|
[23] |
Oliver M, West M, Wulff C. Approximate momentum conservation for spatial semidiscretizations of nonlinear wave equations. Numer Math, 2004, 97: 493-535
CrossRef
Google scholar
|
[24] |
Patrick G, Spiteri R, Zhang W, Cuell C. On converting any one-step method to a variational integrator of the same order. In: 7th International Conference on Multibody systems, Nonlinear Dynamics, and Control, Vol 4. 2009, 341-349
|
[25] |
Reich S. Backward error analysis for numerical integrators. SIAM J Numer Anal, 1999, 36: 1549-1570
CrossRef
Google scholar
|
[26] |
Stern A, Grinspun E. Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model Simul, 2009, 7(4): 1779-1794
CrossRef
Google scholar
|
/
〈 | 〉 |