General techniques for constructing variational integrators

Melvin LEOK, Tatiana SHINGEL

PDF(425 KB)
PDF(425 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 273-303. DOI: 10.1007/s11464-012-0190-9
RESEARCH ARTICLE
RESEARCH ARTICLE

General techniques for constructing variational integrators

Author information +
History +

Abstract

The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton–Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.

Keywords

Geometric numerical integration / geometric mechanics / symplectic integrator / variational integrator / Lagrangian mechanics

Cite this article

Download citation ▾
Melvin LEOK, Tatiana SHINGEL. General techniques for constructing variational integrators. Front Math Chin, 2012, 7(2): 273‒303 https://doi.org/10.1007/s11464-012-0190-9

References

[1]
Benettin G, Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys, 1994, 74: 1117-1143
CrossRef Google scholar
[2]
Bou-Rabee N, Owhadi H. Stochastic variational integrators. IMA J Numer Anal, 2009, 29(2): 421-443
CrossRef Google scholar
[3]
Cortés J, Mart´ınez S. Non-holonomic integrators. Nonlinearity, 2001, 14(5): 1365-1392
CrossRef Google scholar
[4]
Cuell C, Patrick G. Geometric discrete analogues of tangent bundles and constrained Lagrangian systems. J Geom Phys, 2009, 59(7): 976-997
CrossRef Google scholar
[5]
Fetecau R, Marsden J, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems, 2003, 2(3): 381-416
CrossRef Google scholar
[6]
Hairer E. Backward analysis of numerical integrators and symplectic methods. Scientific Computation and Differential Equations (Auckland, 1993). Ann Numer Math, 1994, 1(1-4): 107-132
[7]
Hairer E, Lubich C. The life-span of backward error analysis for numerical integrators. Numer Math, 1997, 76: 441-462
CrossRef Google scholar
[8]
Hairer E, Lubich C, Wanner G. Geometric Numerical Integration. 2nd ed. Springer Series in Computational Mathematics, Vol 31. Berlin: Springer-Verlag, 2006
[9]
Iserles A, Munthe-Kaas H, Nørsett S, Zanna A. Lie-group methods. In: Acta Numerica, Vol 9. Cambridge: Cambridge University Press, 2000, 215-365
[10]
Kahan W. Further remarks on reducing truncation errors. Commun ACM, 1965, 8: 40
CrossRef Google scholar
[11]
Keller H B. Numerical methods for two-point boundary value problems. New York: Dover Publications Inc, 1992
[12]
Lall S, West M. Discrete variational Hamiltonian mechanics. J Phys A, 2006, 39(19): 5509-5519
CrossRef Google scholar
[13]
Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem. Comput Methods Appl Mech Engrg, 2007, 196(29-30): 2907-2924
CrossRef Google scholar
[14]
Lee T, Leok M, McClamroch N. Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mech Dynam Astronom, 2007, 98(2): 121-144
CrossRef Google scholar
[15]
Lee T, Leok M, McClamroch N. Lagrangian mechanics and variational integrators on two-spheres. Int J Numer Methods Eng, 2009, 79(9): 1147-1174
CrossRef Google scholar
[16]
Leok M. Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods. Preprint, 2004, arXiv: math.NA/0508360
[17]
Leok M, Shingel T. Prolongation-collocation variational integrators. IMA J Numer Anal (in press), arXiv: 1101.1995 [math.NA]
[18]
18. Leok M, Zhang J. Discrete Hamiltonian variational integrators. IMA J Numer Anal, 2011, 31(4): 1497-1532
CrossRef Google scholar
[19]
Lew A, Marsden J E, Ortiz M, West M. Asynchronous variational integrators. Arch Ration Mech Anal, 2003, 167(2): 85-146
CrossRef Google scholar
[20]
Leyendecker S, Marsden J, Ortiz M. Variational integrators for constrained mechanical systems. Z Angew Math Mech, 2008, 88: 677-708
CrossRef Google scholar
[21]
Marsden J, Pekarsky S, Shkoller S. Discrete Euler–Poincaré and Lie–Poisson equations. Nonlinearity, 1999, 12(6): 1647-1662
CrossRef Google scholar
[22]
Marsden J E, West M. Discrete mechanics and variational integrators. Acta Numer, 2001, 10: 357-514
CrossRef Google scholar
[23]
Oliver M, West M, Wulff C. Approximate momentum conservation for spatial semidiscretizations of nonlinear wave equations. Numer Math, 2004, 97: 493-535
CrossRef Google scholar
[24]
Patrick G, Spiteri R, Zhang W, Cuell C. On converting any one-step method to a variational integrator of the same order. In: 7th International Conference on Multibody systems, Nonlinear Dynamics, and Control, Vol 4. 2009, 341-349
[25]
Reich S. Backward error analysis for numerical integrators. SIAM J Numer Anal, 1999, 36: 1549-1570
CrossRef Google scholar
[26]
Stern A, Grinspun E. Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model Simul, 2009, 7(4): 1779-1794
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(425 KB)

Accesses

Citations

Detail

Sections
Recommended

/