Frontiers of Mathematics in China >
The second moment of GL(3) × GL(2) L- functions at special points from GL(3) forms
Received date: 23 Jun 2020
Accepted date: 31 Aug 2020
Published date: 15 Oct 2020
Copyright
For a fixed even SL() Hecke{Maass form f, we get an estimate for the second moment of at special points, where runs over an orthogonal basis of Hecke{Maass cusp forms for .
Zhao XU . The second moment of GL(3) × GL(2) L- functions at special points from GL(3) forms[J]. Frontiers of Mathematics in China, 2020 , 15(5) : 1070 -1088 . DOI: 10.1007/s11464-020-0860-y
1 |
Blomer V, Buttcane J. Global decomposition of GL(3) Kloosterman sums and the spectral large sieve. J Reine Angew Math, 2019, 757: 51{88
|
2 |
Blomer V, Buttcane J. On the subconvexity problem for L-functions on GL(3): Ann Sci Éc Norm Super (4) (to appear)
|
3 |
Brumley F. Second order average estimates on local data of cusp forms. Arch Math, 2006, 87: 19–32
|
4 |
Buttcane J. The spectral Kuznetsov formula on SL(3). Trans Amer Math Soc, 2016, 368: 6683–6714
|
5 |
Erdélyi A, Magnus W, Oberhettinger F, Tricomi F. Higher Transcendental Functions, Vol II. New York: McGraw-Hill, 1953
|
6 |
Goldfeld D. Automorphic Forms and L-Functions for the Group GL(n,ℝ). Cambridge Stud Adv Math, Vol 99. Cambridge: Cambridge Univ Press, 2006
|
7 |
Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. 7th ed. New York: Academic Press, 2007
|
8 |
Kim H H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. Kim H H, Sarnak P. Appendix 2: Refined estimates towards the Ramanujan and Selberg conjectures. J Amer Math Soc, 2003, 16: 175–181
|
9 |
Li X. Upper bounds on L-functions at the edge of the critical strip. Int Math Res Not IMRN, 2010, 2010: 727–755
|
10 |
Li X, Young M. The L2 restriction norm of a GL(3) Maass form. Compos Math, 2012, 148: 675–717
|
11 |
Miller S D. On the existence and temperedness of cusp forms for SL(3,ℤ). J Reine Angew Math, 2001, 533: 127C-169
|
12 |
Young M. The second moment of GL(3) × GL(2) L-functions at special points. Math Ann, 2013, 356: 1005–1028
|
/
〈 | 〉 |