The second moment of GL(3) × GL(2) L- functions at special points from GL(3) forms

Zhao XU

Front. Math. China ›› 2020, Vol. 15 ›› Issue (5) : 1070 -1088.

PDF (339KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (5) : 1070 -1088. DOI: 10.1007/s11464-020-0860-y
RESEARCH ARTICLE
RESEARCH ARTICLE

The second moment of GL(3) × GL(2) L- functions at special points from GL(3) forms

Author information +
History +
PDF (339KB)

Abstract

For a fixed even SL(2,) Hecke{Maass form f, we get an estimate for the second moment of L(s,φj×f) at special points, where φj runs over an orthogonal basis of Hecke{Maass cusp forms for SL3().

Keywords

Rankin{Selberg L-functions / Hecke{Maass forms / Kuznetsov trace formula

Cite this article

Download citation ▾
Zhao XU. The second moment of GL(3) × GL(2) L- functions at special points from GL(3) forms. Front. Math. China, 2020, 15(5): 1070-1088 DOI:10.1007/s11464-020-0860-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blomer V, Buttcane J. Global decomposition of GL(3) Kloosterman sums and the spectral large sieve. J Reine Angew Math, 2019, 757: 51{88

[2]

Blomer V, Buttcane J. On the subconvexity problem for L-functions on GL(3): Ann Sci Éc Norm Super (4) (to appear)

[3]

Brumley F. Second order average estimates on local data of cusp forms. Arch Math, 2006, 87: 19–32

[4]

Buttcane J. The spectral Kuznetsov formula on SL(3). Trans Amer Math Soc, 2016, 368: 6683–6714

[5]

Erdélyi A, Magnus W, Oberhettinger F, Tricomi F. Higher Transcendental Functions, Vol II. New York: McGraw-Hill, 1953

[6]

Goldfeld D. Automorphic Forms and L-Functions for the Group GL(n,ℝ). Cambridge Stud Adv Math, Vol 99. Cambridge: Cambridge Univ Press, 2006

[7]

Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. 7th ed. New York: Academic Press, 2007

[8]

Kim H H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. Kim H H, Sarnak P. Appendix 2: Refined estimates towards the Ramanujan and Selberg conjectures. J Amer Math Soc, 2003, 16: 175–181

[9]

Li X. Upper bounds on L-functions at the edge of the critical strip. Int Math Res Not IMRN, 2010, 2010: 727–755

[10]

Li X, Young M. The L2 restriction norm of a GL(3) Maass form. Compos Math, 2012, 148: 675–717

[11]

Miller S D. On the existence and temperedness of cusp forms for SL(3,ℤ). J Reine Angew Math, 2001, 533: 127C-169

[12]

Young M. The second moment of GL(3) × GL(2) L-functions at special points. Math Ann, 2013, 356: 1005–1028

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (339KB)

950

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/