The second moment of GL(3) × GL(2) L- functions at special points from GL(3) forms

Zhao XU

PDF(339 KB)
PDF(339 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (5) : 1070-1088. DOI: 10.1007/s11464-020-0860-y
RESEARCH ARTICLE
RESEARCH ARTICLE

The second moment of GL(3) × GL(2) L- functions at special points from GL(3) forms

Author information +
History +

Abstract

For a fixed even SL(2,) Hecke{Maass form f, we get an estimate for the second moment of L(s,φj×f) at special points, where φj runs over an orthogonal basis of Hecke{Maass cusp forms for SL3().

Keywords

Rankin{Selberg L-functions / Hecke{Maass forms / Kuznetsov trace formula

Cite this article

Download citation ▾
Zhao XU. The second moment of GL(3) × GL(2) L- functions at special points from GL(3) forms. Front. Math. China, 2020, 15(5): 1070‒1088 https://doi.org/10.1007/s11464-020-0860-y

References

[1]
Blomer V, Buttcane J. Global decomposition of GL(3) Kloosterman sums and the spectral large sieve. J Reine Angew Math, 2019, 757: 51{88
CrossRef Google scholar
[2]
Blomer V, Buttcane J. On the subconvexity problem for L-functions on GL(3): Ann Sci Éc Norm Super (4) (to appear)
[3]
Brumley F. Second order average estimates on local data of cusp forms. Arch Math, 2006, 87: 19–32
CrossRef Google scholar
[4]
Buttcane J. The spectral Kuznetsov formula on SL(3). Trans Amer Math Soc, 2016, 368: 6683–6714
CrossRef Google scholar
[5]
Erdélyi A, Magnus W, Oberhettinger F, Tricomi F. Higher Transcendental Functions, Vol II. New York: McGraw-Hill, 1953
[6]
Goldfeld D. Automorphic Forms and L-Functions for the Group GL(n,ℝ). Cambridge Stud Adv Math, Vol 99. Cambridge: Cambridge Univ Press, 2006
[7]
Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. 7th ed. New York: Academic Press, 2007
[8]
Kim H H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. Kim H H, Sarnak P. Appendix 2: Refined estimates towards the Ramanujan and Selberg conjectures. J Amer Math Soc, 2003, 16: 175–181
CrossRef Google scholar
[9]
Li X. Upper bounds on L-functions at the edge of the critical strip. Int Math Res Not IMRN, 2010, 2010: 727–755
CrossRef Google scholar
[10]
Li X, Young M. The L2 restriction norm of a GL(3) Maass form. Compos Math, 2012, 148: 675–717
CrossRef Google scholar
[11]
Miller S D. On the existence and temperedness of cusp forms for SL(3,ℤ). J Reine Angew Math, 2001, 533: 127C-169
CrossRef Google scholar
[12]
Young M. The second moment of GL(3) × GL(2) L-functions at special points. Math Ann, 2013, 356: 1005–1028
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(339 KB)

Accesses

Citations

Detail

Sections
Recommended

/