RESEARCH ARTICLE

Hua’s theorem on five squares of primes

  • Wenjia ZHAO
Expand
  • School of Mathematics, Shandong University, Jinan 250100, China

Received date: 30 Jan 2020

Accepted date: 04 Jul 2020

Published date: 15 Aug 2020

Copyright

2020 Higher Education Press

Abstract

We give an alternative proof of Hua’s theorem that each large N5 (mod 24) can be written as a sum of five squares of primes. The proof depends on an estimate of exponential sums involving the Möbius function.

Cite this article

Wenjia ZHAO . Hua’s theorem on five squares of primes[J]. Frontiers of Mathematics in China, 2020 , 15(4) : 835 -850 . DOI: 10.1007/s11464-020-0851-z

1
Brüdern J, Fouvry E. Lagrange’s four squares theorem with almost prime variables. J Reine Angew Math, 1994, 454: 59–96

DOI

2
Davenport H. On some infinite series involving arithmetical functions (II). Quart J Math (Oxford), 1937, 8: 313–320

DOI

3
Hua L K. Some results in the additive prime number theory. Quart J Math (Oxford), 1938, 9: 68–80

DOI

4
Hua L K. Additive Theory of Prime Numbers. Transl Math Monogr, Vol 13. Providence: Amer Math Soc, 1965

5
Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 2004

6
Liu J Y. On Lagrange’s theorem with prime variables. Quart J Math (Oxford), 2002, 54: 453–467

DOI

7
Liu J Y, Liu M C. The exceptional set in the four prime squares problem. Illinois J Math, 2000, 44: 272–293

DOI

8
Liu J Y, Liu M C, Zhan T. Squares of primes and powers of 2 (English summary). Monatsh Math, 1999, 128(4): 283–313

DOI

9
Liu J Y, Wooley T D, Yu G. The quadratic Waring-Goldbach problem. J Number Theory, 2004, 107(2): 298–321

DOI

10
Ren X M. On exponential sum over primes and application in Waring-Goldbach problem. Sci China Ser A Math, 2005, 48(6): 785–797

DOI

11
Schwarz W. Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen II. J Reine Angew Math, 1961, 206: 78–112

DOI

Outlines

/