Hua’s theorem on five squares of primes
Wenjia ZHAO
Hua’s theorem on five squares of primes
We give an alternative proof of Hua’s theorem that each large N≡5 (mod 24) can be written as a sum of five squares of primes. The proof depends on an estimate of exponential sums involving the Möbius function.
Exponential sums / Hua’s theorem / Möbius function
[1] |
Brüdern J, Fouvry E. Lagrange’s four squares theorem with almost prime variables. J Reine Angew Math, 1994, 454: 59–96
CrossRef
Google scholar
|
[2] |
Davenport H. On some infinite series involving arithmetical functions (II). Quart J Math (Oxford), 1937, 8: 313–320
CrossRef
Google scholar
|
[3] |
Hua L K. Some results in the additive prime number theory. Quart J Math (Oxford), 1938, 9: 68–80
CrossRef
Google scholar
|
[4] |
Hua L K. Additive Theory of Prime Numbers. Transl Math Monogr, Vol 13. Providence: Amer Math Soc, 1965
|
[5] |
Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 2004
|
[6] |
Liu J Y. On Lagrange’s theorem with prime variables. Quart J Math (Oxford), 2002, 54: 453–467
CrossRef
Google scholar
|
[7] |
Liu J Y, Liu M C. The exceptional set in the four prime squares problem. Illinois J Math, 2000, 44: 272–293
CrossRef
Google scholar
|
[8] |
Liu J Y, Liu M C, Zhan T. Squares of primes and powers of 2 (English summary). Monatsh Math, 1999, 128(4): 283–313
CrossRef
Google scholar
|
[9] |
Liu J Y, Wooley T D, Yu G. The quadratic Waring-Goldbach problem. J Number Theory, 2004, 107(2): 298–321
CrossRef
Google scholar
|
[10] |
Ren X M. On exponential sum over primes and application in Waring-Goldbach problem. Sci China Ser A Math, 2005, 48(6): 785–797
CrossRef
Google scholar
|
[11] |
Schwarz W. Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen II. J Reine Angew Math, 1961, 206: 78–112
CrossRef
Google scholar
|
/
〈 | 〉 |