RESEARCH ARTICLE

Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces

  • Xianjie YAN ,
  • Dachun YANG ,
  • Wen YUAN
Expand
  • Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received date: 20 May 2020

Accepted date: 25 Jun 2020

Published date: 15 Aug 2020

Copyright

2020 Higher Education Press

Abstract

Let X be a ball quasi-Banach function space satisfying some mild additional assumptions and HX(n) the associated Hardy-type space. In this article, we first establish the finite atomic characterization of HX(n). As an application, we prove that the dual space of HX(n) is the Campanato space associated with X. For any given α(0,1] and s+, using the atomic and the Littlewood–Paley function characterizations of HX(n),we also establish its s-order intrinsic square function characterizations, respectively, in terms of the intrinsic Lusin-area function Sα,s,the intrinsic g-function gα,s,and the intrinsic gλ-function gλ,α,s, where λ coincides with the best known range.

Cite this article

Xianjie YAN , Dachun YANG , Wen YUAN . Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces[J]. Frontiers of Mathematics in China, 2020 , 15(4) : 769 -806 . DOI: 10.1007/s11464-020-0849-6

1
Bennett C, Sharpley R. Interpolation of Operators. Pure Appl Math, Vol 129. Boston: Academic Press, 1988

2
Bownik M. Anisotropic Hardy Spaces and Wavelets. Mem Amer Math Soc, Vol 164, No 781. Providence: Amer Math Soc, 2003

DOI

3
Chang D-C, Wang S, Yang D, Zhang Y. Littlewood–Paley characterizations of Hardytype spaces associated with ball quasi-Banach function spaces. Complex Anal Oper Theory, 2020, 14: Paper No 40 (33 pp)

DOI

4
Cruz-Uribe D V, Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Appl Numer Harmon Anal. Heidelberg: Birkhäuser/Springer, 2013

DOI

5
Cruz-Uribe D, Wang L-A D. Variable Hardy spaces. Indiana Univ Math J, 2014, 63: 447–493

DOI

6
Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137–193

DOI

7
Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Math Notes, Vol 28. Princeton: Princeton Univ Press, 1982

8
García-Cuerva J. Weighted Hp spaces. Dissertationes Math (Rozprawy Mat), 1979, 162: (63 pp)

DOI

9
Grafakos L. Classical Fourier Analysis. 3rd ed. Grad Texts in Math, Vol 249. New York: Springer, 2014

DOI

10
Huang J, Liu Y. Some characterizations of weighted Hardy spaces. J Math Anal Appl, 2010, 363: 121–127

DOI

11
Huang L, Liu J, Yang D, Yuan W. Dual spaces of anisotropic mixed-norm Hardy spaces. Proc Amer Math Soc, 2019, 147: 1201–1215

DOI

12
Jiao Y, Zuo Y, Zhou D, Wu L. Variable Hardy–Lorentz spaces Hp(⋅),q(ℝn).Math Nachr, 2019, 292: 309–349

13
Lerner A K. Sharp weighted norm inequalities for Littlewood–Paley operators and singular integrals. Adv Math, 2011, 226: 3912–3926

DOI

14
Lerner A K. On sharp aperture-weighted estimates for square functions. J Fourier Anal Appl, 2014, 20: 784–800

DOI

15
Liang Y, Yang D. Musielak–Orlicz Campanato spaces and applications. J Math Anal Appl, 2013, 406: 307–322

DOI

16
Liang Y, Yang D. Intrinsic square function characterizations of Musielak–Orlicz Hardy spaces. Trans Amer Math Soc, 2015, 367: 3225–3256

DOI

17
Lindenstrauss J, Tzafriri L. Classical Banach Spaces. II. Function Spaces. Ergeb Math Grenzgeb, Vol 97. Berlin: Springer-Verlag, 1979

DOI

18
Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces. J Funct Anal, 2012, 262: 3665–3748

DOI

19
Nakai E, Sawano Y. Orlicz–Hardy spaces and their duals. Sci China Math, 2014, 57: 903–962

DOI

20
Okada S, Ricker W J, Sánchez Pérez E A. Optimal Domain and Integral Extension of Operators. Acting in Function Spaces. Oper Theory Adv Appl, Vol 180. Basel: Birkhäuser, 2008

DOI

21
Sawano Y. Theory of Besov Spaces. Dev Math, Vol 56. Singapore: Springer, 2018

DOI

22
Sawano Y, Ho K-P, Yang D, Yang S. Hardy spaces for ball quasi-Banach function spaces. Dissertationes Math (Rozprawy Mat.), 2017, 525: 1–102

DOI

23
Sawano Y, Tanaka H. The Fatou property of block spaces. J Math Sci Univ Tokyo, 2015, 22: 663–683

24
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993

DOI

25
Taibleson M H, Weiss G. The molecular characterization of certain Hardy spaces. Astérisque, 1980, 77: 67–149

26
Wang F, Yang D, Yang S. Applications of Hardy spaces associated with ball quasi- Banach function spaces. Results Math, 2020, 75: Art 26 (58 pp)

DOI

27
Wang H, Liu H. The intrinsic square function characterizations of weighted Hardy spaces. Illinois J Math, 2012, 56: 367–381

DOI

28
Wang S, Yang D, Yuan W, Zhang Y. Weak Hardy-type spaces associated with ball quasi-Banach function spaces II: Littlewood–Paley characterizations and real interpolation. J Geom Anal, 2019, http://doi.org/10.1007/s12220-019-00293-1

DOI

29
Wilson M. The intrinsic square function. Rev Mat Iberoam, 2007, 23: 771–791

DOI

30
Wilson M. Weighted Littlewood–Paley Theory and Exponential-Square Integrability. Lecture Notes in Math, Vol 1924. Berlin: Springer, 2008

31
Wilson M. How fast and in what sense(s) does the Calderón reproducing formula converge? J Fourier Anal Appl, 2010, 16: 768–785

DOI

32
Wilson M. Convergence and stability of the Calderón reproducing formula in H1 and BMO.J Fourier Anal Appl, 2011, 17: 801–820

DOI

33
Yan X. Intrinsic square function characterizations of variable weak Hardy spaces. Taiwanese J Math, 2020, 24: 43–62

DOI

34
Yan X. Intrinsic square function characterizations of weak Musielak–Orlicz Hardy spaces. Banach J Math Anal, 2019, 13: 969–988

DOI

35
Yang D, Liang Y, Ky L D. Real-Variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Math, Vol 2182. Cham: Springer-Verlag, 2017

DOI

36
Zhang Y, Wang S, Yang D, Yuan W. Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: decompositions with applications to boundedness of Calderón–Zygmund operators. Sci China Math, 2020, https://doi.org/10.1007/s11425- 019-1645-1

DOI

37
Zhang Y, Yang D, Yuan W, Wang S. Real-variable characterizations of Orlicz-slice Hardy spaces. Anal Appl (Singap), 2019, 17: 597–664

DOI

38
Zhuo C, Yang D, Liang Y. Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull Malays Math Sci Soc, 2016, 39: 1541–1577

DOI

Outlines

/