Frontiers of Mathematics in China >
Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces
Received date: 20 May 2020
Accepted date: 25 Jun 2020
Published date: 15 Aug 2020
Copyright
Let X be a ball quasi-Banach function space satisfying some mild additional assumptions and the associated Hardy-type space. In this article, we first establish the finite atomic characterization of . As an application, we prove that the dual space of is the Campanato space associated with X. For any given and , using the atomic and the Littlewood–Paley function characterizations of ,we also establish its s-order intrinsic square function characterizations, respectively, in terms of the intrinsic Lusin-area function ,the intrinsic g-function ,and the intrinsic -function , where λ coincides with the best known range.
Xianjie YAN , Dachun YANG , Wen YUAN . Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces[J]. Frontiers of Mathematics in China, 2020 , 15(4) : 769 -806 . DOI: 10.1007/s11464-020-0849-6
1 |
Bennett C, Sharpley R. Interpolation of Operators. Pure Appl Math, Vol 129. Boston: Academic Press, 1988
|
2 |
Bownik M. Anisotropic Hardy Spaces and Wavelets. Mem Amer Math Soc, Vol 164, No 781. Providence: Amer Math Soc, 2003
|
3 |
Chang D-C, Wang S, Yang D, Zhang Y. Littlewood–Paley characterizations of Hardytype spaces associated with ball quasi-Banach function spaces. Complex Anal Oper Theory, 2020, 14: Paper No 40 (33 pp)
|
4 |
Cruz-Uribe D V, Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Appl Numer Harmon Anal. Heidelberg: Birkhäuser/Springer, 2013
|
5 |
Cruz-Uribe D, Wang L-A D. Variable Hardy spaces. Indiana Univ Math J, 2014, 63: 447–493
|
6 |
Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137–193
|
7 |
Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Math Notes, Vol 28. Princeton: Princeton Univ Press, 1982
|
8 |
García-Cuerva J. Weighted Hp spaces. Dissertationes Math (Rozprawy Mat), 1979, 162: (63 pp)
|
9 |
Grafakos L. Classical Fourier Analysis. 3rd ed. Grad Texts in Math, Vol 249. New York: Springer, 2014
|
10 |
Huang J, Liu Y. Some characterizations of weighted Hardy spaces. J Math Anal Appl, 2010, 363: 121–127
|
11 |
Huang L, Liu J, Yang D, Yuan W. Dual spaces of anisotropic mixed-norm Hardy spaces. Proc Amer Math Soc, 2019, 147: 1201–1215
|
12 |
Jiao Y, Zuo Y, Zhou D, Wu L. Variable Hardy–Lorentz spaces Hp(⋅),q(ℝn).Math Nachr, 2019, 292: 309–349
|
13 |
Lerner A K. Sharp weighted norm inequalities for Littlewood–Paley operators and singular integrals. Adv Math, 2011, 226: 3912–3926
|
14 |
Lerner A K. On sharp aperture-weighted estimates for square functions. J Fourier Anal Appl, 2014, 20: 784–800
|
15 |
Liang Y, Yang D. Musielak–Orlicz Campanato spaces and applications. J Math Anal Appl, 2013, 406: 307–322
|
16 |
Liang Y, Yang D. Intrinsic square function characterizations of Musielak–Orlicz Hardy spaces. Trans Amer Math Soc, 2015, 367: 3225–3256
|
17 |
Lindenstrauss J, Tzafriri L. Classical Banach Spaces. II. Function Spaces. Ergeb Math Grenzgeb, Vol 97. Berlin: Springer-Verlag, 1979
|
18 |
Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces. J Funct Anal, 2012, 262: 3665–3748
|
19 |
Nakai E, Sawano Y. Orlicz–Hardy spaces and their duals. Sci China Math, 2014, 57: 903–962
|
20 |
Okada S, Ricker W J, Sánchez Pérez E A. Optimal Domain and Integral Extension of Operators. Acting in Function Spaces. Oper Theory Adv Appl, Vol 180. Basel: Birkhäuser, 2008
|
21 |
Sawano Y. Theory of Besov Spaces. Dev Math, Vol 56. Singapore: Springer, 2018
|
22 |
Sawano Y, Ho K-P, Yang D, Yang S. Hardy spaces for ball quasi-Banach function spaces. Dissertationes Math (Rozprawy Mat.), 2017, 525: 1–102
|
23 |
Sawano Y, Tanaka H. The Fatou property of block spaces. J Math Sci Univ Tokyo, 2015, 22: 663–683
|
24 |
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993
|
25 |
Taibleson M H, Weiss G. The molecular characterization of certain Hardy spaces. Astérisque, 1980, 77: 67–149
|
26 |
Wang F, Yang D, Yang S. Applications of Hardy spaces associated with ball quasi- Banach function spaces. Results Math, 2020, 75: Art 26 (58 pp)
|
27 |
Wang H, Liu H. The intrinsic square function characterizations of weighted Hardy spaces. Illinois J Math, 2012, 56: 367–381
|
28 |
Wang S, Yang D, Yuan W, Zhang Y. Weak Hardy-type spaces associated with ball quasi-Banach function spaces II: Littlewood–Paley characterizations and real interpolation. J Geom Anal, 2019, http://doi.org/10.1007/s12220-019-00293-1
|
29 |
Wilson M. The intrinsic square function. Rev Mat Iberoam, 2007, 23: 771–791
|
30 |
Wilson M. Weighted Littlewood–Paley Theory and Exponential-Square Integrability. Lecture Notes in Math, Vol 1924. Berlin: Springer, 2008
|
31 |
Wilson M. How fast and in what sense(s) does the Calderón reproducing formula converge? J Fourier Anal Appl, 2010, 16: 768–785
|
32 |
Wilson M. Convergence and stability of the Calderón reproducing formula in H1 and BMO.J Fourier Anal Appl, 2011, 17: 801–820
|
33 |
Yan X. Intrinsic square function characterizations of variable weak Hardy spaces. Taiwanese J Math, 2020, 24: 43–62
|
34 |
Yan X. Intrinsic square function characterizations of weak Musielak–Orlicz Hardy spaces. Banach J Math Anal, 2019, 13: 969–988
|
35 |
Yang D, Liang Y, Ky L D. Real-Variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Math, Vol 2182. Cham: Springer-Verlag, 2017
|
36 |
Zhang Y, Wang S, Yang D, Yuan W. Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: decompositions with applications to boundedness of Calderón–Zygmund operators. Sci China Math, 2020, https://doi.org/10.1007/s11425- 019-1645-1
|
37 |
Zhang Y, Yang D, Yuan W, Wang S. Real-variable characterizations of Orlicz-slice Hardy spaces. Anal Appl (Singap), 2019, 17: 597–664
|
38 |
Zhuo C, Yang D, Liang Y. Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull Malays Math Sci Soc, 2016, 39: 1541–1577
|
/
〈 | 〉 |