RESEARCH ARTICLE

Weighted product Hardy space associated with operators

  • Qingquan DENG , 1 ,
  • Djalal Eddine GUEDJIBA 1,2
Expand
  • 1. School of Mathematics and Statistics, Hubei Province Key Laboratory of Mathematical Physics, Central China Normal University, Wuhan 430079, China
  • 2. Department of Mathematics, University of Batna 2, 53 Route de Constantine, Fesdis, Batna 05078, Algeria

Received date: 24 Oct 2019

Accepted date: 25 Jun 2020

Published date: 15 Aug 2020

Copyright

2020 Higher Education Press

Abstract

Assuming that the operators L1, L2 are self-adjoint and etLi(i=1,2) satisfy the generalized Davies-Gaffney estimates, we shall prove that the weighted Hardy space HL1,L2,ω1(n1×n2) associated to operators L1, L2 on product domain, which is defined in terms of area function, has an atomic decomposition for some weight ω.

Cite this article

Qingquan DENG , Djalal Eddine GUEDJIBA . Weighted product Hardy space associated with operators[J]. Frontiers of Mathematics in China, 2020 , 15(4) : 649 -683 . DOI: 10.1007/s11464-020-0852-y

1
Auscher P. On Necessary and Suffcient Conditions for Lp-Estimates of Riesz Transforms Associated to Elliptic Operators on ℝn and Related Estimates. Mem Amer Math Soc, Vol 186, No 871. Providence: Amer Math Soc, 2007

DOI

2
Bownik M, Li B, Yang D, Zhou Y. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283: 392–442

DOI

3
Chang D C, Yang D C, Zhou Y. Boundedness of sublinear operators on Hardy spaces and its application. J Math Soc Japan, 2010, 62: 321–353

DOI

4
Chang S-Y A, Fefferman R. A continuous version of H1 with BMO on the bidisc. Ann of Math, 1980, 112: 179–201

DOI

5
Chang S-Y A, Fefferman R. The Calderón-Zygmund decomposition on product domains. Amer J Math, 1982, 104: 445–468

DOI

6
Chang S-Y A, Fefferman R. Some resent developments in Fourier analysis and Hp-theory on product domains. Bull Amer Math Soc, 1985, 12: 1–43

DOI

7
Chen P, Duong X T, Li J, Ward L A, Yan L X. Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type. Math Z, 2016, 282: 1033–1065

DOI

8
Chen P, Duong X T, Li J, Ward L A, Yan L X. Marcinkiewicz-type spectral multipliers on Hardy and Lebesgue spaces on product spaces of homogeneous type. J Fourier Anal Appl, 2017, 23: 21–64

DOI

9
Coulhom T, Sikora A. Gaussian heat kernel upper bounds via the Phragmén-Lindelöf. Proc Lond Math Soc, 2008, 96: 507–544

DOI

10
Deng D G, Song L, Tan C Q, Yan L X. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds on product domains. J Geom Anal, 2007, 17: 455–483

DOI

11
Deng Q Q, Ding Y, Yao Y H. Characterizations of Hardy spaces associated to higher order elliptic operators. J Funct Anal, 2012, 263: 604–674

DOI

12
Ding Y, Han Y, Lu G, Wu X. Boundedness of singular integrals on multiparameter weighted hardy spaces Hωp(ℝn×ℝm). Potential Anal, 2012, 37: 31–56

DOI

13
Duong X T, Li J, Yan L X. Endpoint estimates for singular integrals with non-smooth kernel on product spaces. arXiv: 1509.07548

14
Fefferman R. Calderón-Zygmund theory for product domains: Hp spaces. Proc Natl Acad Sci USA, 1986, 83: 840–843

DOI

15
Fefferman R. Multiparameter Fourier analysis. In: Stein E M, ed. Beijing Lectures in Harmonic Analysis (Beijing, 1984). Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 47–130

DOI

16
Fefferman R. Harmonic analysis on product spaces. Ann of Math, 1987, 126: 109–130

DOI

17
Fefferman R. Ap weights and singular integrals. Amer J Math, 1998, 110: 975–987

DOI

18
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143

DOI

19
Garcia-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. North-Holland Math Stud, Vol 116. Amsterdam: North-Holland, 1985

20
Gundy R F, Stien E M. Hp theory for the poly-disc. Proc Natl Acad Sci USA, 1979, 76: 1026–1029

DOI

21
Han Y, Li J, Lin C C. Criterions of the H2 boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci, 2016, 16: 845–907

22
Han Y, Li J, Lu G. Duality of multiparameter Hardy spaces Hp on spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci (5), 2010, 9: 645–685

23
Han Y, Li J, Lu G. Multiparameter Hardy spaces theory on Carnot-Caratheodory spaces and product spaces of homogeneous type. Trans Amer Math Soc, 2013, 365: 319–360

DOI

24
Han Y, Lu G, Zhao K. Discrete Calderón identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces. J Geom Anal, 2010, 20: 670–689

DOI

25
Hofmann S, Lu G Z, Mitrea D, Mitrea M, Yan L Y. Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates. Mem Amer Math Soc, Vol 214, No 1007. Providence: Amer Math Soc, 2011

DOI

26
Hofmann S, Mayboroda S. Hardy and BMO spaces associated to divergence form elliptic operators. Math Ann, 2009, 344: 37–116

DOI

27
Journé J L. Calderón-Zygmund operators on product spaces. Rev Mat Iberoam, 1985, 1: 55–91

DOI

28
Krug D. A weighted version of the atomic decomposition for Hp (bi-halfspace). Indiana Univ Math J, 1988, 37: 277–300

DOI

29
Krug D, Torchinsky A. A weighted version of Journé’s Lemma. Rev Mat Iberoam, 1994, 10: 593–598

DOI

30
Liu S, Song L. The atomic decomposition of weighted Hardy spaces associated to selfadjoint operators on product spaces. J Math Anal Appl, 2016, 443: 92–115

DOI

31
Liu S, Yang M. The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces. Czechoslovak Math J, 2018, 68: 415–431

DOI

32
Martell J M, Prisuelos-Arribas C. Weighted Hardy spaces associated with elliptic operators. Part I: weighted norm inequalities for conical square function. Trans Amer Math Soc, 2017, 369: 4193–4233

DOI

33
Martell J M, Prisuelos-Arribas C. Weighted Hardy spaces associated with elliptic operators. Part II: characterisation of HL1(ω). Publ Mat, 2018, 62: 475–535

DOI

34
Sato S. An atomic decomposition for parabolic Hp space on product domains. Proc Amer Math Soc, 1988, 104: 185–192

DOI

35
Sato S. Weighted inequalities on product domains. Studia Math, 1989, 92: 59–72

DOI

36
Song L, Tan C. Hardy spaces associated to Schrodinger operators on product spaces. J Funct Spaces, 2012, Art ID 179015 (17 pp)

DOI

37
Stien E M. Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993

38
Wu X F. Atomic decomposition characterizations of weighted multiparameter Hardy spaces. Front Math China, 2012, 7: 1195–1212

DOI

39
Zhao K, Han Y. Boundedness of operators on Hardy spaces. Taiwanese J Math, 2010, 14: 319{327

DOI

40
Zhu X X. Atomic decomposition for weighted Hp spaces on product domains. Sci China Ser A, 1995, 35: 158–168

Outlines

/