Frontiers of Mathematics in China >
Weighted product Hardy space associated with operators
Received date: 24 Oct 2019
Accepted date: 25 Jun 2020
Published date: 15 Aug 2020
Copyright
Assuming that the operators L1, L2 are self-adjoint and satisfy the generalized Davies-Gaffney estimates, we shall prove that the weighted Hardy space associated to operators L1, L2 on product domain, which is defined in terms of area function, has an atomic decomposition for some weight .
Key words: Produce Hardy space; Ap weights; Davies-Ga_ney estimates
Qingquan DENG , Djalal Eddine GUEDJIBA . Weighted product Hardy space associated with operators[J]. Frontiers of Mathematics in China, 2020 , 15(4) : 649 -683 . DOI: 10.1007/s11464-020-0852-y
1 |
Auscher P. On Necessary and Suffcient Conditions for Lp-Estimates of Riesz Transforms Associated to Elliptic Operators on ℝn and Related Estimates. Mem Amer Math Soc, Vol 186, No 871. Providence: Amer Math Soc, 2007
|
2 |
Bownik M, Li B, Yang D, Zhou Y. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283: 392–442
|
3 |
Chang D C, Yang D C, Zhou Y. Boundedness of sublinear operators on Hardy spaces and its application. J Math Soc Japan, 2010, 62: 321–353
|
4 |
Chang S-Y A, Fefferman R. A continuous version of H1 with BMO on the bidisc. Ann of Math, 1980, 112: 179–201
|
5 |
Chang S-Y A, Fefferman R. The Calderón-Zygmund decomposition on product domains. Amer J Math, 1982, 104: 445–468
|
6 |
Chang S-Y A, Fefferman R. Some resent developments in Fourier analysis and Hp-theory on product domains. Bull Amer Math Soc, 1985, 12: 1–43
|
7 |
Chen P, Duong X T, Li J, Ward L A, Yan L X. Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type. Math Z, 2016, 282: 1033–1065
|
8 |
Chen P, Duong X T, Li J, Ward L A, Yan L X. Marcinkiewicz-type spectral multipliers on Hardy and Lebesgue spaces on product spaces of homogeneous type. J Fourier Anal Appl, 2017, 23: 21–64
|
9 |
Coulhom T, Sikora A. Gaussian heat kernel upper bounds via the Phragmén-Lindelöf. Proc Lond Math Soc, 2008, 96: 507–544
|
10 |
Deng D G, Song L, Tan C Q, Yan L X. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds on product domains. J Geom Anal, 2007, 17: 455–483
|
11 |
Deng Q Q, Ding Y, Yao Y H. Characterizations of Hardy spaces associated to higher order elliptic operators. J Funct Anal, 2012, 263: 604–674
|
12 |
Ding Y, Han Y, Lu G, Wu X. Boundedness of singular integrals on multiparameter weighted hardy spaces Hωp(ℝn×ℝm). Potential Anal, 2012, 37: 31–56
|
13 |
Duong X T, Li J, Yan L X. Endpoint estimates for singular integrals with non-smooth kernel on product spaces. arXiv: 1509.07548
|
14 |
Fefferman R. Calderón-Zygmund theory for product domains: Hp spaces. Proc Natl Acad Sci USA, 1986, 83: 840–843
|
15 |
Fefferman R. Multiparameter Fourier analysis. In: Stein E M, ed. Beijing Lectures in Harmonic Analysis (Beijing, 1984). Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 47–130
|
16 |
Fefferman R. Harmonic analysis on product spaces. Ann of Math, 1987, 126: 109–130
|
17 |
Fefferman R. Ap weights and singular integrals. Amer J Math, 1998, 110: 975–987
|
18 |
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143
|
19 |
Garcia-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. North-Holland Math Stud, Vol 116. Amsterdam: North-Holland, 1985
|
20 |
Gundy R F, Stien E M. Hp theory for the poly-disc. Proc Natl Acad Sci USA, 1979, 76: 1026–1029
|
21 |
Han Y, Li J, Lin C C. Criterions of the H2 boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci, 2016, 16: 845–907
|
22 |
Han Y, Li J, Lu G. Duality of multiparameter Hardy spaces Hp on spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci (5), 2010, 9: 645–685
|
23 |
Han Y, Li J, Lu G. Multiparameter Hardy spaces theory on Carnot-Caratheodory spaces and product spaces of homogeneous type. Trans Amer Math Soc, 2013, 365: 319–360
|
24 |
Han Y, Lu G, Zhao K. Discrete Calderón identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces. J Geom Anal, 2010, 20: 670–689
|
25 |
Hofmann S, Lu G Z, Mitrea D, Mitrea M, Yan L Y. Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates. Mem Amer Math Soc, Vol 214, No 1007. Providence: Amer Math Soc, 2011
|
26 |
Hofmann S, Mayboroda S. Hardy and BMO spaces associated to divergence form elliptic operators. Math Ann, 2009, 344: 37–116
|
27 |
Journé J L. Calderón-Zygmund operators on product spaces. Rev Mat Iberoam, 1985, 1: 55–91
|
28 |
Krug D. A weighted version of the atomic decomposition for Hp (bi-halfspace). Indiana Univ Math J, 1988, 37: 277–300
|
29 |
Krug D, Torchinsky A. A weighted version of Journé’s Lemma. Rev Mat Iberoam, 1994, 10: 593–598
|
30 |
Liu S, Song L. The atomic decomposition of weighted Hardy spaces associated to selfadjoint operators on product spaces. J Math Anal Appl, 2016, 443: 92–115
|
31 |
Liu S, Yang M. The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces. Czechoslovak Math J, 2018, 68: 415–431
|
32 |
Martell J M, Prisuelos-Arribas C. Weighted Hardy spaces associated with elliptic operators. Part I: weighted norm inequalities for conical square function. Trans Amer Math Soc, 2017, 369: 4193–4233
|
33 |
Martell J M, Prisuelos-Arribas C. Weighted Hardy spaces associated with elliptic operators. Part II: characterisation of HL1(ω). Publ Mat, 2018, 62: 475–535
|
34 |
Sato S. An atomic decomposition for parabolic Hp space on product domains. Proc Amer Math Soc, 1988, 104: 185–192
|
35 |
Sato S. Weighted inequalities on product domains. Studia Math, 1989, 92: 59–72
|
36 |
Song L, Tan C. Hardy spaces associated to Schrodinger operators on product spaces. J Funct Spaces, 2012, Art ID 179015 (17 pp)
|
37 |
Stien E M. Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993
|
38 |
Wu X F. Atomic decomposition characterizations of weighted multiparameter Hardy spaces. Front Math China, 2012, 7: 1195–1212
|
39 |
Zhao K, Han Y. Boundedness of operators on Hardy spaces. Taiwanese J Math, 2010, 14: 319{327
|
40 |
Zhu X X. Atomic decomposition for weighted Hp spaces on product domains. Sci China Ser A, 1995, 35: 158–168
|
/
〈 | 〉 |