Weighted product Hardy space associated with operators
Qingquan DENG, Djalal Eddine GUEDJIBA
Weighted product Hardy space associated with operators
Assuming that the operators L1, L2 are self-adjoint and satisfy the generalized Davies-Gaffney estimates, we shall prove that the weighted Hardy space associated to operators L1, L2 on product domain, which is defined in terms of area function, has an atomic decomposition for some weight .
Produce Hardy space / Ap weights / Davies-Ga_ney estimates
[1] |
Auscher P. On Necessary and Suffcient Conditions for Lp-Estimates of Riesz Transforms Associated to Elliptic Operators on ℝn and Related Estimates. Mem Amer Math Soc, Vol 186, No 871. Providence: Amer Math Soc, 2007
CrossRef
Google scholar
|
[2] |
Bownik M, Li B, Yang D, Zhou Y. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283: 392–442
CrossRef
Google scholar
|
[3] |
Chang D C, Yang D C, Zhou Y. Boundedness of sublinear operators on Hardy spaces and its application. J Math Soc Japan, 2010, 62: 321–353
CrossRef
Google scholar
|
[4] |
Chang S-Y A, Fefferman R. A continuous version of H1 with BMO on the bidisc. Ann of Math, 1980, 112: 179–201
CrossRef
Google scholar
|
[5] |
Chang S-Y A, Fefferman R. The Calderón-Zygmund decomposition on product domains. Amer J Math, 1982, 104: 445–468
CrossRef
Google scholar
|
[6] |
Chang S-Y A, Fefferman R. Some resent developments in Fourier analysis and Hp-theory on product domains. Bull Amer Math Soc, 1985, 12: 1–43
CrossRef
Google scholar
|
[7] |
Chen P, Duong X T, Li J, Ward L A, Yan L X. Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type. Math Z, 2016, 282: 1033–1065
CrossRef
Google scholar
|
[8] |
Chen P, Duong X T, Li J, Ward L A, Yan L X. Marcinkiewicz-type spectral multipliers on Hardy and Lebesgue spaces on product spaces of homogeneous type. J Fourier Anal Appl, 2017, 23: 21–64
CrossRef
Google scholar
|
[9] |
Coulhom T, Sikora A. Gaussian heat kernel upper bounds via the Phragmén-Lindelöf. Proc Lond Math Soc, 2008, 96: 507–544
CrossRef
Google scholar
|
[10] |
Deng D G, Song L, Tan C Q, Yan L X. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds on product domains. J Geom Anal, 2007, 17: 455–483
CrossRef
Google scholar
|
[11] |
Deng Q Q, Ding Y, Yao Y H. Characterizations of Hardy spaces associated to higher order elliptic operators. J Funct Anal, 2012, 263: 604–674
CrossRef
Google scholar
|
[12] |
Ding Y, Han Y, Lu G, Wu X. Boundedness of singular integrals on multiparameter weighted hardy spaces Hωp(ℝn×ℝm). Potential Anal, 2012, 37: 31–56
CrossRef
Google scholar
|
[13] |
Duong X T, Li J, Yan L X. Endpoint estimates for singular integrals with non-smooth kernel on product spaces. arXiv: 1509.07548
|
[14] |
Fefferman R. Calderón-Zygmund theory for product domains: Hp spaces. Proc Natl Acad Sci USA, 1986, 83: 840–843
CrossRef
Google scholar
|
[15] |
Fefferman R. Multiparameter Fourier analysis. In: Stein E M, ed. Beijing Lectures in Harmonic Analysis (Beijing, 1984). Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 47–130
CrossRef
Google scholar
|
[16] |
Fefferman R. Harmonic analysis on product spaces. Ann of Math, 1987, 126: 109–130
CrossRef
Google scholar
|
[17] |
Fefferman R. Ap weights and singular integrals. Amer J Math, 1998, 110: 975–987
CrossRef
Google scholar
|
[18] |
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143
CrossRef
Google scholar
|
[19] |
Garcia-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. North-Holland Math Stud, Vol 116. Amsterdam: North-Holland, 1985
|
[20] |
Gundy R F, Stien E M. Hp theory for the poly-disc. Proc Natl Acad Sci USA, 1979, 76: 1026–1029
CrossRef
Google scholar
|
[21] |
Han Y, Li J, Lin C C. Criterions of the H2 boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci, 2016, 16: 845–907
|
[22] |
Han Y, Li J, Lu G. Duality of multiparameter Hardy spaces Hp on spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci (5), 2010, 9: 645–685
|
[23] |
Han Y, Li J, Lu G. Multiparameter Hardy spaces theory on Carnot-Caratheodory spaces and product spaces of homogeneous type. Trans Amer Math Soc, 2013, 365: 319–360
CrossRef
Google scholar
|
[24] |
Han Y, Lu G, Zhao K. Discrete Calderón identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces. J Geom Anal, 2010, 20: 670–689
CrossRef
Google scholar
|
[25] |
Hofmann S, Lu G Z, Mitrea D, Mitrea M, Yan L Y. Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates. Mem Amer Math Soc, Vol 214, No 1007. Providence: Amer Math Soc, 2011
CrossRef
Google scholar
|
[26] |
Hofmann S, Mayboroda S. Hardy and BMO spaces associated to divergence form elliptic operators. Math Ann, 2009, 344: 37–116
CrossRef
Google scholar
|
[27] |
Journé J L. Calderón-Zygmund operators on product spaces. Rev Mat Iberoam, 1985, 1: 55–91
CrossRef
Google scholar
|
[28] |
Krug D. A weighted version of the atomic decomposition for Hp (bi-halfspace). Indiana Univ Math J, 1988, 37: 277–300
CrossRef
Google scholar
|
[29] |
Krug D, Torchinsky A. A weighted version of Journé’s Lemma. Rev Mat Iberoam, 1994, 10: 593–598
CrossRef
Google scholar
|
[30] |
Liu S, Song L. The atomic decomposition of weighted Hardy spaces associated to selfadjoint operators on product spaces. J Math Anal Appl, 2016, 443: 92–115
CrossRef
Google scholar
|
[31] |
Liu S, Yang M. The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces. Czechoslovak Math J, 2018, 68: 415–431
CrossRef
Google scholar
|
[32] |
Martell J M, Prisuelos-Arribas C. Weighted Hardy spaces associated with elliptic operators. Part I: weighted norm inequalities for conical square function. Trans Amer Math Soc, 2017, 369: 4193–4233
CrossRef
Google scholar
|
[33] |
Martell J M, Prisuelos-Arribas C. Weighted Hardy spaces associated with elliptic operators. Part II: characterisation of HL1(ω). Publ Mat, 2018, 62: 475–535
CrossRef
Google scholar
|
[34] |
Sato S. An atomic decomposition for parabolic Hp space on product domains. Proc Amer Math Soc, 1988, 104: 185–192
CrossRef
Google scholar
|
[35] |
Sato S. Weighted inequalities on product domains. Studia Math, 1989, 92: 59–72
CrossRef
Google scholar
|
[36] |
Song L, Tan C. Hardy spaces associated to Schrodinger operators on product spaces. J Funct Spaces, 2012, Art ID 179015 (17 pp)
CrossRef
Google scholar
|
[37] |
Stien E M. Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993
|
[38] |
Wu X F. Atomic decomposition characterizations of weighted multiparameter Hardy spaces. Front Math China, 2012, 7: 1195–1212
CrossRef
Google scholar
|
[39] |
Zhao K, Han Y. Boundedness of operators on Hardy spaces. Taiwanese J Math, 2010, 14: 319{327
CrossRef
Google scholar
|
[40] |
Zhu X X. Atomic decomposition for weighted Hp spaces on product domains. Sci China Ser A, 1995, 35: 158–168
|
/
〈 | 〉 |