Weighted product Hardy space associated with operators

Qingquan DENG , Djalal Eddine GUEDJIBA

Front. Math. China ›› 2020, Vol. 15 ›› Issue (4) : 649 -683.

PDF (424KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (4) : 649 -683. DOI: 10.1007/s11464-020-0852-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Weighted product Hardy space associated with operators

Author information +
History +
PDF (424KB)

Abstract

Assuming that the operators L1, L2 are self-adjoint and etLi(i=1,2) satisfy the generalized Davies-Gaffney estimates, we shall prove that the weighted Hardy space HL1,L2,ω1(n1×n2) associated to operators L1, L2 on product domain, which is defined in terms of area function, has an atomic decomposition for some weight ω.

Keywords

Produce Hardy space / Ap weights / Davies-Ga_ney estimates

Cite this article

Download citation ▾
Qingquan DENG, Djalal Eddine GUEDJIBA. Weighted product Hardy space associated with operators. Front. Math. China, 2020, 15(4): 649-683 DOI:10.1007/s11464-020-0852-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auscher P. On Necessary and Suffcient Conditions for Lp-Estimates of Riesz Transforms Associated to Elliptic Operators on ℝn and Related Estimates. Mem Amer Math Soc, Vol 186, No 871. Providence: Amer Math Soc, 2007

[2]

Bownik M, Li B, Yang D, Zhou Y. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283: 392–442

[3]

Chang D C, Yang D C, Zhou Y. Boundedness of sublinear operators on Hardy spaces and its application. J Math Soc Japan, 2010, 62: 321–353

[4]

Chang S-Y A, Fefferman R. A continuous version of H1 with BMO on the bidisc. Ann of Math, 1980, 112: 179–201

[5]

Chang S-Y A, Fefferman R. The Calderón-Zygmund decomposition on product domains. Amer J Math, 1982, 104: 445–468

[6]

Chang S-Y A, Fefferman R. Some resent developments in Fourier analysis and Hp-theory on product domains. Bull Amer Math Soc, 1985, 12: 1–43

[7]

Chen P, Duong X T, Li J, Ward L A, Yan L X. Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type. Math Z, 2016, 282: 1033–1065

[8]

Chen P, Duong X T, Li J, Ward L A, Yan L X. Marcinkiewicz-type spectral multipliers on Hardy and Lebesgue spaces on product spaces of homogeneous type. J Fourier Anal Appl, 2017, 23: 21–64

[9]

Coulhom T, Sikora A. Gaussian heat kernel upper bounds via the Phragmén-Lindelöf. Proc Lond Math Soc, 2008, 96: 507–544

[10]

Deng D G, Song L, Tan C Q, Yan L X. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds on product domains. J Geom Anal, 2007, 17: 455–483

[11]

Deng Q Q, Ding Y, Yao Y H. Characterizations of Hardy spaces associated to higher order elliptic operators. J Funct Anal, 2012, 263: 604–674

[12]

Ding Y, Han Y, Lu G, Wu X. Boundedness of singular integrals on multiparameter weighted hardy spaces Hωp(ℝn×ℝm). Potential Anal, 2012, 37: 31–56

[13]

Duong X T, Li J, Yan L X. Endpoint estimates for singular integrals with non-smooth kernel on product spaces. arXiv: 1509.07548

[14]

Fefferman R. Calderón-Zygmund theory for product domains: Hp spaces. Proc Natl Acad Sci USA, 1986, 83: 840–843

[15]

Fefferman R. Multiparameter Fourier analysis. In: Stein E M, ed. Beijing Lectures in Harmonic Analysis (Beijing, 1984). Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 47–130

[16]

Fefferman R. Harmonic analysis on product spaces. Ann of Math, 1987, 126: 109–130

[17]

Fefferman R. Ap weights and singular integrals. Amer J Math, 1998, 110: 975–987

[18]

Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143

[19]

Garcia-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. North-Holland Math Stud, Vol 116. Amsterdam: North-Holland, 1985

[20]

Gundy R F, Stien E M. Hp theory for the poly-disc. Proc Natl Acad Sci USA, 1979, 76: 1026–1029

[21]

Han Y, Li J, Lin C C. Criterions of the H2 boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci, 2016, 16: 845–907

[22]

Han Y, Li J, Lu G. Duality of multiparameter Hardy spaces Hp on spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci (5), 2010, 9: 645–685

[23]

Han Y, Li J, Lu G. Multiparameter Hardy spaces theory on Carnot-Caratheodory spaces and product spaces of homogeneous type. Trans Amer Math Soc, 2013, 365: 319–360

[24]

Han Y, Lu G, Zhao K. Discrete Calderón identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces. J Geom Anal, 2010, 20: 670–689

[25]

Hofmann S, Lu G Z, Mitrea D, Mitrea M, Yan L Y. Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates. Mem Amer Math Soc, Vol 214, No 1007. Providence: Amer Math Soc, 2011

[26]

Hofmann S, Mayboroda S. Hardy and BMO spaces associated to divergence form elliptic operators. Math Ann, 2009, 344: 37–116

[27]

Journé J L. Calderón-Zygmund operators on product spaces. Rev Mat Iberoam, 1985, 1: 55–91

[28]

Krug D. A weighted version of the atomic decomposition for Hp (bi-halfspace). Indiana Univ Math J, 1988, 37: 277–300

[29]

Krug D, Torchinsky A. A weighted version of Journé’s Lemma. Rev Mat Iberoam, 1994, 10: 593–598

[30]

Liu S, Song L. The atomic decomposition of weighted Hardy spaces associated to selfadjoint operators on product spaces. J Math Anal Appl, 2016, 443: 92–115

[31]

Liu S, Yang M. The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces. Czechoslovak Math J, 2018, 68: 415–431

[32]

Martell J M, Prisuelos-Arribas C. Weighted Hardy spaces associated with elliptic operators. Part I: weighted norm inequalities for conical square function. Trans Amer Math Soc, 2017, 369: 4193–4233

[33]

Martell J M, Prisuelos-Arribas C. Weighted Hardy spaces associated with elliptic operators. Part II: characterisation of HL1(ω). Publ Mat, 2018, 62: 475–535

[34]

Sato S. An atomic decomposition for parabolic Hp space on product domains. Proc Amer Math Soc, 1988, 104: 185–192

[35]

Sato S. Weighted inequalities on product domains. Studia Math, 1989, 92: 59–72

[36]

Song L, Tan C. Hardy spaces associated to Schrodinger operators on product spaces. J Funct Spaces, 2012, Art ID 179015 (17 pp)

[37]

Stien E M. Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993

[38]

Wu X F. Atomic decomposition characterizations of weighted multiparameter Hardy spaces. Front Math China, 2012, 7: 1195–1212

[39]

Zhao K, Han Y. Boundedness of operators on Hardy spaces. Taiwanese J Math, 2010, 14: 319{327

[40]

Zhu X X. Atomic decomposition for weighted Hp spaces on product domains. Sci China Ser A, 1995, 35: 158–168

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (424KB)

874

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/