Weighted product Hardy space associated with operators

Qingquan DENG, Djalal Eddine GUEDJIBA

PDF(424 KB)
PDF(424 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (4) : 649-683. DOI: 10.1007/s11464-020-0852-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Weighted product Hardy space associated with operators

Author information +
History +

Abstract

Assuming that the operators L1, L2 are self-adjoint and etLi(i=1,2) satisfy the generalized Davies-Gaffney estimates, we shall prove that the weighted Hardy space HL1,L2,ω1(n1×n2) associated to operators L1, L2 on product domain, which is defined in terms of area function, has an atomic decomposition for some weight ω.

Keywords

Produce Hardy space / Ap weights / Davies-Ga_ney estimates

Cite this article

Download citation ▾
Qingquan DENG, Djalal Eddine GUEDJIBA. Weighted product Hardy space associated with operators. Front. Math. China, 2020, 15(4): 649‒683 https://doi.org/10.1007/s11464-020-0852-y

References

[1]
Auscher P. On Necessary and Suffcient Conditions for Lp-Estimates of Riesz Transforms Associated to Elliptic Operators on ℝn and Related Estimates. Mem Amer Math Soc, Vol 186, No 871. Providence: Amer Math Soc, 2007
CrossRef Google scholar
[2]
Bownik M, Li B, Yang D, Zhou Y. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283: 392–442
CrossRef Google scholar
[3]
Chang D C, Yang D C, Zhou Y. Boundedness of sublinear operators on Hardy spaces and its application. J Math Soc Japan, 2010, 62: 321–353
CrossRef Google scholar
[4]
Chang S-Y A, Fefferman R. A continuous version of H1 with BMO on the bidisc. Ann of Math, 1980, 112: 179–201
CrossRef Google scholar
[5]
Chang S-Y A, Fefferman R. The Calderón-Zygmund decomposition on product domains. Amer J Math, 1982, 104: 445–468
CrossRef Google scholar
[6]
Chang S-Y A, Fefferman R. Some resent developments in Fourier analysis and Hp-theory on product domains. Bull Amer Math Soc, 1985, 12: 1–43
CrossRef Google scholar
[7]
Chen P, Duong X T, Li J, Ward L A, Yan L X. Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type. Math Z, 2016, 282: 1033–1065
CrossRef Google scholar
[8]
Chen P, Duong X T, Li J, Ward L A, Yan L X. Marcinkiewicz-type spectral multipliers on Hardy and Lebesgue spaces on product spaces of homogeneous type. J Fourier Anal Appl, 2017, 23: 21–64
CrossRef Google scholar
[9]
Coulhom T, Sikora A. Gaussian heat kernel upper bounds via the Phragmén-Lindelöf. Proc Lond Math Soc, 2008, 96: 507–544
CrossRef Google scholar
[10]
Deng D G, Song L, Tan C Q, Yan L X. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds on product domains. J Geom Anal, 2007, 17: 455–483
CrossRef Google scholar
[11]
Deng Q Q, Ding Y, Yao Y H. Characterizations of Hardy spaces associated to higher order elliptic operators. J Funct Anal, 2012, 263: 604–674
CrossRef Google scholar
[12]
Ding Y, Han Y, Lu G, Wu X. Boundedness of singular integrals on multiparameter weighted hardy spaces Hωp(ℝn×ℝm). Potential Anal, 2012, 37: 31–56
CrossRef Google scholar
[13]
Duong X T, Li J, Yan L X. Endpoint estimates for singular integrals with non-smooth kernel on product spaces. arXiv: 1509.07548
[14]
Fefferman R. Calderón-Zygmund theory for product domains: Hp spaces. Proc Natl Acad Sci USA, 1986, 83: 840–843
CrossRef Google scholar
[15]
Fefferman R. Multiparameter Fourier analysis. In: Stein E M, ed. Beijing Lectures in Harmonic Analysis (Beijing, 1984). Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 47–130
CrossRef Google scholar
[16]
Fefferman R. Harmonic analysis on product spaces. Ann of Math, 1987, 126: 109–130
CrossRef Google scholar
[17]
Fefferman R. Ap weights and singular integrals. Amer J Math, 1998, 110: 975–987
CrossRef Google scholar
[18]
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143
CrossRef Google scholar
[19]
Garcia-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. North-Holland Math Stud, Vol 116. Amsterdam: North-Holland, 1985
[20]
Gundy R F, Stien E M. Hp theory for the poly-disc. Proc Natl Acad Sci USA, 1979, 76: 1026–1029
CrossRef Google scholar
[21]
Han Y, Li J, Lin C C. Criterions of the H2 boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci, 2016, 16: 845–907
[22]
Han Y, Li J, Lu G. Duality of multiparameter Hardy spaces Hp on spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci (5), 2010, 9: 645–685
[23]
Han Y, Li J, Lu G. Multiparameter Hardy spaces theory on Carnot-Caratheodory spaces and product spaces of homogeneous type. Trans Amer Math Soc, 2013, 365: 319–360
CrossRef Google scholar
[24]
Han Y, Lu G, Zhao K. Discrete Calderón identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces. J Geom Anal, 2010, 20: 670–689
CrossRef Google scholar
[25]
Hofmann S, Lu G Z, Mitrea D, Mitrea M, Yan L Y. Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates. Mem Amer Math Soc, Vol 214, No 1007. Providence: Amer Math Soc, 2011
CrossRef Google scholar
[26]
Hofmann S, Mayboroda S. Hardy and BMO spaces associated to divergence form elliptic operators. Math Ann, 2009, 344: 37–116
CrossRef Google scholar
[27]
Journé J L. Calderón-Zygmund operators on product spaces. Rev Mat Iberoam, 1985, 1: 55–91
CrossRef Google scholar
[28]
Krug D. A weighted version of the atomic decomposition for Hp (bi-halfspace). Indiana Univ Math J, 1988, 37: 277–300
CrossRef Google scholar
[29]
Krug D, Torchinsky A. A weighted version of Journé’s Lemma. Rev Mat Iberoam, 1994, 10: 593–598
CrossRef Google scholar
[30]
Liu S, Song L. The atomic decomposition of weighted Hardy spaces associated to selfadjoint operators on product spaces. J Math Anal Appl, 2016, 443: 92–115
CrossRef Google scholar
[31]
Liu S, Yang M. The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces. Czechoslovak Math J, 2018, 68: 415–431
CrossRef Google scholar
[32]
Martell J M, Prisuelos-Arribas C. Weighted Hardy spaces associated with elliptic operators. Part I: weighted norm inequalities for conical square function. Trans Amer Math Soc, 2017, 369: 4193–4233
CrossRef Google scholar
[33]
Martell J M, Prisuelos-Arribas C. Weighted Hardy spaces associated with elliptic operators. Part II: characterisation of HL1(ω). Publ Mat, 2018, 62: 475–535
CrossRef Google scholar
[34]
Sato S. An atomic decomposition for parabolic Hp space on product domains. Proc Amer Math Soc, 1988, 104: 185–192
CrossRef Google scholar
[35]
Sato S. Weighted inequalities on product domains. Studia Math, 1989, 92: 59–72
CrossRef Google scholar
[36]
Song L, Tan C. Hardy spaces associated to Schrodinger operators on product spaces. J Funct Spaces, 2012, Art ID 179015 (17 pp)
CrossRef Google scholar
[37]
Stien E M. Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993
[38]
Wu X F. Atomic decomposition characterizations of weighted multiparameter Hardy spaces. Front Math China, 2012, 7: 1195–1212
CrossRef Google scholar
[39]
Zhao K, Han Y. Boundedness of operators on Hardy spaces. Taiwanese J Math, 2010, 14: 319{327
CrossRef Google scholar
[40]
Zhu X X. Atomic decomposition for weighted Hp spaces on product domains. Sci China Ser A, 1995, 35: 158–168

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(424 KB)

Accesses

Citations

Detail

Sections
Recommended

/