RESEARCH ARTICLE

Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO

  • Xiaona CUI , 1 ,
  • Jing ZHANG 2
Expand
  • 1. College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China
  • 2. School of Mathematics and Statistics, Yili Normal University, Yining 835000, China

Received date: 21 Jun 2019

Accepted date: 13 Jul 2020

Published date: 15 Aug 2020

Copyright

2020 Higher Education Press

Abstract

Let λ>0 and let the Bessel operator Δλ=d2dx22λxddx defined on +:=(0,). We show that the oscillation and ρ-variation operators of the Riesz transform RΔλ associated with Δλ are bounded on BMO(+,dmλ), where ρ>2 and dmλ=x2λdx. Moreover, we construct a (1,)Δλ-atom as a counterexample to show that the oscillation and ρ-variation operators of RΔλ are not bounded from H1(+,dmλ) to L1(+,dmλ). Finally, we prove that the oscillation and the (1,)Δλ-variation operators for the smooth truncations associated with Bessel operators R˜Δλ are bounded from H1(+,dmλ) to L1(+,dmλ).

Cite this article

Xiaona CUI , Jing ZHANG . Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO[J]. Frontiers of Mathematics in China, 2020 , 15(4) : 617 -647 . DOI: 10.1007/s11464-020-0853-x

1
Andersen K F, Muckenhoupt B. Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions. Studia Math, 1982, 72: 9–26

DOI

2
Betancor J J, Buraczewski D, Fariña J C, Martínez T, Torrea J L. Riesz transform related to Bessel operators. www.math.uni.wroc.pl/~dbura/publications/bessel.pdf

3
Betancor J J, Chicco Ruiz A, Farina J C, Rodrguez-Mesa L. Maximal operators, Riesz transforms functions associated with Bessel operators on BMO. J Math Anal Appl, 2010, 363: 310–326

DOI

4
Betancor J J, Crescimbeni R, Torrea J L. Oscillation and variation of the Laguerre heat and Poisson semigroups and Riesz transforms. Acta Math Sci Ser B Engl Ser, 2012, 32: 907–928

DOI

5
Betancor J J, Dziubański J, Torrea J L. On Hardy spaces associated with Bessel operators. J Anal Math, 2009, 107: 195–219

DOI

6
Betancor J J, Fariña J C, Buraczewski D, Martnez T, Torrea J. Riesz transforms related to Bessel operators. Proc Roy Soc Edinburgh Sect A, 2007, 137(4): 701–725

DOI

7
Betancor J J, Fariña J C, Harboure E, Rodríguez-Mesa L. Variation operators for semigroups and Riesz transforms on BMO in the Schrödinger setting. Potential Anal, 2013, 38: 711–739

DOI

8
Campbell J T, Jones R L, Reinhold K, Wierdl M. Oscillation and variation for the Hilbert transform. Duke Math J, 2000, 105: 59–83

DOI

9
Coifman R R, Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogenes. Lecture Notes in Math, Vol 242. Berlin: Springer, 1971

DOI

10
Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645

DOI

11
Crescimbeni R, Maícas R A, Menárguez T, Torrea J L, Viciani B. The ρ-variation as an operator between maximal operators and singular integrals. J Evol Equ, 2009, 9: 81–102

DOI

12
Duong X T, Li J, Wick B D, Yang D. Factorization for Hardy spaces and characterization for BMO spaces via commutators in the Bessel setting. Indiana Univ Math J, 2017, 66(4): 1081–1106

DOI

13
Gillespie T A, Torrea J L. Dimension free estimates for the oscillation of Riesz transforms. Israel J Math, 2004, 141: 125–144

DOI

14
Jones R L, Kaufman R, Roenblatt J M, Wierdl M. Oscillation in ergodic theory. Ergodic Theory Dynam Systems, 1998, 18: 889–935

DOI

15
Jones R L, Reinhold K. Oscillation and variation inequalities for convolution powers. Ergodic Theory Dynam Systems, 2001, 21: 1809–1829

DOI

16
Jones R L, Seeger A, Wright J. Strong variational and jump inequalities in harmonic analysis. Trans Amer Math Soc, 2008, 360(12): 6711–6742

DOI

17
Liu H. Operators related to truncated Hilbert transforms on H1. Acta Math Sin (Engl Ser), 2017, 33(7): 1011–1020

DOI

18
Ma T, Torrea J L, Xu Q. Weighted variation inequalities for differential operators and singular integrals. J Funct Anal, 2015, 268: 376–416

DOI

19
Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans Amer Math Soc, 1972, 165: 207–226

DOI

20
Muckenhoupt B, Stein E M. Classical expansions and their relation to conjugate harmonic functions. Trans Amer Math Soc, 1965, 118: 17–92

DOI

21
Villani M. Riesz transforms associated to Bessel operators. Illinois J Math, 2008, 52: 77–89

DOI

22
Wu H, Yang D, Zhang J. Oscillation and variation for semigroups associated with Bessel operators. J Math Anal Appl, 2016, 443(2): 848–867

DOI

23
Wu H, Yang D, Zhang J. Oscillation and variation for Riesz transform associated with Bessel operators. Proc Roy Soc Edinburgh Sect A, 2019, 149(1): 169–190

DOI

24
Yang D C, Yang D Y. Real-variable characterizations of the Hardy spaces associated with Bessel operators. Anal Appl (Singap), 2011, 9: 345{368

DOI

25
Yang D C, Zhou Y. Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J Math Anal Appl, 2008, 339: 622–635

DOI

Outlines

/