Frontiers of Mathematics in China >
Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO
Received date: 21 Jun 2019
Accepted date: 13 Jul 2020
Published date: 15 Aug 2020
Copyright
Let and let the Bessel operator defined on . We show that the oscillation and -variation operators of the Riesz transform associated with are bounded on BMO, where and . Moreover, we construct a -atom as a counterexample to show that the oscillation and -variation operators of are not bounded from to . Finally, we prove that the oscillation and the -variation operators for the smooth truncations associated with Bessel operators are bounded from to .
Key words: Oscillation operator; variation operator; Bessel operator
Xiaona CUI , Jing ZHANG . Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO[J]. Frontiers of Mathematics in China, 2020 , 15(4) : 617 -647 . DOI: 10.1007/s11464-020-0853-x
1 |
Andersen K F, Muckenhoupt B. Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions. Studia Math, 1982, 72: 9–26
|
2 |
Betancor J J, Buraczewski D, Fariña J C, Martínez T, Torrea J L. Riesz transform related to Bessel operators. www.math.uni.wroc.pl/~dbura/publications/bessel.pdf
|
3 |
Betancor J J, Chicco Ruiz A, Farina J C, Rodrguez-Mesa L. Maximal operators, Riesz transforms functions associated with Bessel operators on BMO. J Math Anal Appl, 2010, 363: 310–326
|
4 |
Betancor J J, Crescimbeni R, Torrea J L. Oscillation and variation of the Laguerre heat and Poisson semigroups and Riesz transforms. Acta Math Sci Ser B Engl Ser, 2012, 32: 907–928
|
5 |
Betancor J J, Dziubański J, Torrea J L. On Hardy spaces associated with Bessel operators. J Anal Math, 2009, 107: 195–219
|
6 |
Betancor J J, Fariña J C, Buraczewski D, Martnez T, Torrea J. Riesz transforms related to Bessel operators. Proc Roy Soc Edinburgh Sect A, 2007, 137(4): 701–725
|
7 |
Betancor J J, Fariña J C, Harboure E, Rodríguez-Mesa L. Variation operators for semigroups and Riesz transforms on BMO in the Schrödinger setting. Potential Anal, 2013, 38: 711–739
|
8 |
Campbell J T, Jones R L, Reinhold K, Wierdl M. Oscillation and variation for the Hilbert transform. Duke Math J, 2000, 105: 59–83
|
9 |
Coifman R R, Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogenes. Lecture Notes in Math, Vol 242. Berlin: Springer, 1971
|
10 |
Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645
|
11 |
Crescimbeni R, Maícas R A, Menárguez T, Torrea J L, Viciani B. The ρ-variation as an operator between maximal operators and singular integrals. J Evol Equ, 2009, 9: 81–102
|
12 |
Duong X T, Li J, Wick B D, Yang D. Factorization for Hardy spaces and characterization for BMO spaces via commutators in the Bessel setting. Indiana Univ Math J, 2017, 66(4): 1081–1106
|
13 |
Gillespie T A, Torrea J L. Dimension free estimates for the oscillation of Riesz transforms. Israel J Math, 2004, 141: 125–144
|
14 |
Jones R L, Kaufman R, Roenblatt J M, Wierdl M. Oscillation in ergodic theory. Ergodic Theory Dynam Systems, 1998, 18: 889–935
|
15 |
Jones R L, Reinhold K. Oscillation and variation inequalities for convolution powers. Ergodic Theory Dynam Systems, 2001, 21: 1809–1829
|
16 |
Jones R L, Seeger A, Wright J. Strong variational and jump inequalities in harmonic analysis. Trans Amer Math Soc, 2008, 360(12): 6711–6742
|
17 |
Liu H. Operators related to truncated Hilbert transforms on H1. Acta Math Sin (Engl Ser), 2017, 33(7): 1011–1020
|
18 |
Ma T, Torrea J L, Xu Q. Weighted variation inequalities for differential operators and singular integrals. J Funct Anal, 2015, 268: 376–416
|
19 |
Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans Amer Math Soc, 1972, 165: 207–226
|
20 |
Muckenhoupt B, Stein E M. Classical expansions and their relation to conjugate harmonic functions. Trans Amer Math Soc, 1965, 118: 17–92
|
21 |
Villani M. Riesz transforms associated to Bessel operators. Illinois J Math, 2008, 52: 77–89
|
22 |
Wu H, Yang D, Zhang J. Oscillation and variation for semigroups associated with Bessel operators. J Math Anal Appl, 2016, 443(2): 848–867
|
23 |
Wu H, Yang D, Zhang J. Oscillation and variation for Riesz transform associated with Bessel operators. Proc Roy Soc Edinburgh Sect A, 2019, 149(1): 169–190
|
24 |
Yang D C, Yang D Y. Real-variable characterizations of the Hardy spaces associated with Bessel operators. Anal Appl (Singap), 2011, 9: 345{368
|
25 |
Yang D C, Zhou Y. Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J Math Anal Appl, 2008, 339: 622–635
|
/
〈 | 〉 |