Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO

Xiaona CUI, Jing ZHANG

PDF(415 KB)
PDF(415 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (4) : 617-647. DOI: 10.1007/s11464-020-0853-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO

Author information +
History +

Abstract

Let λ>0 and let the Bessel operator Δλ=d2dx22λxddx defined on +:=(0,). We show that the oscillation and ρ-variation operators of the Riesz transform RΔλ associated with Δλ are bounded on BMO(+,dmλ), where ρ>2 and dmλ=x2λdx. Moreover, we construct a (1,)Δλ-atom as a counterexample to show that the oscillation and ρ-variation operators of RΔλ are not bounded from H1(+,dmλ) to L1(+,dmλ). Finally, we prove that the oscillation and the (1,)Δλ-variation operators for the smooth truncations associated with Bessel operators R˜Δλ are bounded from H1(+,dmλ) to L1(+,dmλ).

Keywords

Oscillation operator / variation operator / Bessel operator

Cite this article

Download citation ▾
Xiaona CUI, Jing ZHANG. Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO. Front. Math. China, 2020, 15(4): 617‒647 https://doi.org/10.1007/s11464-020-0853-x

References

[1]
Andersen K F, Muckenhoupt B. Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions. Studia Math, 1982, 72: 9–26
CrossRef Google scholar
[2]
Betancor J J, Buraczewski D, Fariña J C, Martínez T, Torrea J L. Riesz transform related to Bessel operators. www.math.uni.wroc.pl/~dbura/publications/bessel.pdf
[3]
Betancor J J, Chicco Ruiz A, Farina J C, Rodrguez-Mesa L. Maximal operators, Riesz transforms functions associated with Bessel operators on BMO. J Math Anal Appl, 2010, 363: 310–326
CrossRef Google scholar
[4]
Betancor J J, Crescimbeni R, Torrea J L. Oscillation and variation of the Laguerre heat and Poisson semigroups and Riesz transforms. Acta Math Sci Ser B Engl Ser, 2012, 32: 907–928
CrossRef Google scholar
[5]
Betancor J J, Dziubański J, Torrea J L. On Hardy spaces associated with Bessel operators. J Anal Math, 2009, 107: 195–219
CrossRef Google scholar
[6]
Betancor J J, Fariña J C, Buraczewski D, Martnez T, Torrea J. Riesz transforms related to Bessel operators. Proc Roy Soc Edinburgh Sect A, 2007, 137(4): 701–725
CrossRef Google scholar
[7]
Betancor J J, Fariña J C, Harboure E, Rodríguez-Mesa L. Variation operators for semigroups and Riesz transforms on BMO in the Schrödinger setting. Potential Anal, 2013, 38: 711–739
CrossRef Google scholar
[8]
Campbell J T, Jones R L, Reinhold K, Wierdl M. Oscillation and variation for the Hilbert transform. Duke Math J, 2000, 105: 59–83
CrossRef Google scholar
[9]
Coifman R R, Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogenes. Lecture Notes in Math, Vol 242. Berlin: Springer, 1971
CrossRef Google scholar
[10]
Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645
CrossRef Google scholar
[11]
Crescimbeni R, Maícas R A, Menárguez T, Torrea J L, Viciani B. The ρ-variation as an operator between maximal operators and singular integrals. J Evol Equ, 2009, 9: 81–102
CrossRef Google scholar
[12]
Duong X T, Li J, Wick B D, Yang D. Factorization for Hardy spaces and characterization for BMO spaces via commutators in the Bessel setting. Indiana Univ Math J, 2017, 66(4): 1081–1106
CrossRef Google scholar
[13]
Gillespie T A, Torrea J L. Dimension free estimates for the oscillation of Riesz transforms. Israel J Math, 2004, 141: 125–144
CrossRef Google scholar
[14]
Jones R L, Kaufman R, Roenblatt J M, Wierdl M. Oscillation in ergodic theory. Ergodic Theory Dynam Systems, 1998, 18: 889–935
CrossRef Google scholar
[15]
Jones R L, Reinhold K. Oscillation and variation inequalities for convolution powers. Ergodic Theory Dynam Systems, 2001, 21: 1809–1829
CrossRef Google scholar
[16]
Jones R L, Seeger A, Wright J. Strong variational and jump inequalities in harmonic analysis. Trans Amer Math Soc, 2008, 360(12): 6711–6742
CrossRef Google scholar
[17]
Liu H. Operators related to truncated Hilbert transforms on H1. Acta Math Sin (Engl Ser), 2017, 33(7): 1011–1020
CrossRef Google scholar
[18]
Ma T, Torrea J L, Xu Q. Weighted variation inequalities for differential operators and singular integrals. J Funct Anal, 2015, 268: 376–416
CrossRef Google scholar
[19]
Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans Amer Math Soc, 1972, 165: 207–226
CrossRef Google scholar
[20]
Muckenhoupt B, Stein E M. Classical expansions and their relation to conjugate harmonic functions. Trans Amer Math Soc, 1965, 118: 17–92
CrossRef Google scholar
[21]
Villani M. Riesz transforms associated to Bessel operators. Illinois J Math, 2008, 52: 77–89
CrossRef Google scholar
[22]
Wu H, Yang D, Zhang J. Oscillation and variation for semigroups associated with Bessel operators. J Math Anal Appl, 2016, 443(2): 848–867
CrossRef Google scholar
[23]
Wu H, Yang D, Zhang J. Oscillation and variation for Riesz transform associated with Bessel operators. Proc Roy Soc Edinburgh Sect A, 2019, 149(1): 169–190
CrossRef Google scholar
[24]
Yang D C, Yang D Y. Real-variable characterizations of the Hardy spaces associated with Bessel operators. Anal Appl (Singap), 2011, 9: 345{368
CrossRef Google scholar
[25]
Yang D C, Zhou Y. Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J Math Anal Appl, 2008, 339: 622–635
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(415 KB)

Accesses

Citations

Detail

Sections
Recommended

/