Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO
Xiaona CUI, Jing ZHANG
Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO
Let and let the Bessel operator defined on . We show that the oscillation and -variation operators of the Riesz transform associated with are bounded on BMO, where and . Moreover, we construct a -atom as a counterexample to show that the oscillation and -variation operators of are not bounded from to . Finally, we prove that the oscillation and the -variation operators for the smooth truncations associated with Bessel operators are bounded from to .
Oscillation operator / variation operator / Bessel operator
[1] |
Andersen K F, Muckenhoupt B. Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions. Studia Math, 1982, 72: 9–26
CrossRef
Google scholar
|
[2] |
Betancor J J, Buraczewski D, Fariña J C, Martínez T, Torrea J L. Riesz transform related to Bessel operators. www.math.uni.wroc.pl/~dbura/publications/bessel.pdf
|
[3] |
Betancor J J, Chicco Ruiz A, Farina J C, Rodrguez-Mesa L. Maximal operators, Riesz transforms functions associated with Bessel operators on BMO. J Math Anal Appl, 2010, 363: 310–326
CrossRef
Google scholar
|
[4] |
Betancor J J, Crescimbeni R, Torrea J L. Oscillation and variation of the Laguerre heat and Poisson semigroups and Riesz transforms. Acta Math Sci Ser B Engl Ser, 2012, 32: 907–928
CrossRef
Google scholar
|
[5] |
Betancor J J, Dziubański J, Torrea J L. On Hardy spaces associated with Bessel operators. J Anal Math, 2009, 107: 195–219
CrossRef
Google scholar
|
[6] |
Betancor J J, Fariña J C, Buraczewski D, Martnez T, Torrea J. Riesz transforms related to Bessel operators. Proc Roy Soc Edinburgh Sect A, 2007, 137(4): 701–725
CrossRef
Google scholar
|
[7] |
Betancor J J, Fariña J C, Harboure E, Rodríguez-Mesa L. Variation operators for semigroups and Riesz transforms on BMO in the Schrödinger setting. Potential Anal, 2013, 38: 711–739
CrossRef
Google scholar
|
[8] |
Campbell J T, Jones R L, Reinhold K, Wierdl M. Oscillation and variation for the Hilbert transform. Duke Math J, 2000, 105: 59–83
CrossRef
Google scholar
|
[9] |
Coifman R R, Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogenes. Lecture Notes in Math, Vol 242. Berlin: Springer, 1971
CrossRef
Google scholar
|
[10] |
Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645
CrossRef
Google scholar
|
[11] |
Crescimbeni R, Maícas R A, Menárguez T, Torrea J L, Viciani B. The ρ-variation as an operator between maximal operators and singular integrals. J Evol Equ, 2009, 9: 81–102
CrossRef
Google scholar
|
[12] |
Duong X T, Li J, Wick B D, Yang D. Factorization for Hardy spaces and characterization for BMO spaces via commutators in the Bessel setting. Indiana Univ Math J, 2017, 66(4): 1081–1106
CrossRef
Google scholar
|
[13] |
Gillespie T A, Torrea J L. Dimension free estimates for the oscillation of Riesz transforms. Israel J Math, 2004, 141: 125–144
CrossRef
Google scholar
|
[14] |
Jones R L, Kaufman R, Roenblatt J M, Wierdl M. Oscillation in ergodic theory. Ergodic Theory Dynam Systems, 1998, 18: 889–935
CrossRef
Google scholar
|
[15] |
Jones R L, Reinhold K. Oscillation and variation inequalities for convolution powers. Ergodic Theory Dynam Systems, 2001, 21: 1809–1829
CrossRef
Google scholar
|
[16] |
Jones R L, Seeger A, Wright J. Strong variational and jump inequalities in harmonic analysis. Trans Amer Math Soc, 2008, 360(12): 6711–6742
CrossRef
Google scholar
|
[17] |
Liu H. Operators related to truncated Hilbert transforms on H1. Acta Math Sin (Engl Ser), 2017, 33(7): 1011–1020
CrossRef
Google scholar
|
[18] |
Ma T, Torrea J L, Xu Q. Weighted variation inequalities for differential operators and singular integrals. J Funct Anal, 2015, 268: 376–416
CrossRef
Google scholar
|
[19] |
Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans Amer Math Soc, 1972, 165: 207–226
CrossRef
Google scholar
|
[20] |
Muckenhoupt B, Stein E M. Classical expansions and their relation to conjugate harmonic functions. Trans Amer Math Soc, 1965, 118: 17–92
CrossRef
Google scholar
|
[21] |
Villani M. Riesz transforms associated to Bessel operators. Illinois J Math, 2008, 52: 77–89
CrossRef
Google scholar
|
[22] |
Wu H, Yang D, Zhang J. Oscillation and variation for semigroups associated with Bessel operators. J Math Anal Appl, 2016, 443(2): 848–867
CrossRef
Google scholar
|
[23] |
Wu H, Yang D, Zhang J. Oscillation and variation for Riesz transform associated with Bessel operators. Proc Roy Soc Edinburgh Sect A, 2019, 149(1): 169–190
CrossRef
Google scholar
|
[24] |
Yang D C, Yang D Y. Real-variable characterizations of the Hardy spaces associated with Bessel operators. Anal Appl (Singap), 2011, 9: 345{368
CrossRef
Google scholar
|
[25] |
Yang D C, Zhou Y. Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J Math Anal Appl, 2008, 339: 622–635
CrossRef
Google scholar
|
/
〈 | 〉 |