Frontiers of Mathematics in China >
Cartan-Eilenberg N-complexes with respect to self-orthogonal subcategories
Received date: 24 Nov 2019
Accepted date: 19 Mar 2020
Published date: 15 Apr 2020
Copyright
Let R be an arbitrary associated ring. For an integer N≥2 and a self-orthogonal subcategory of R-modules, we study the notion of Cartan-Eilenberg N-complexes. We show that an N-complex X is Cartan-Eilenberg if and only if in which is a N-complex and is a graded R-module with for all . As applications of the result, we obtain some characterizations of Cartan-Eilenberg projective and injective N-complexes, establish Cartan and Eilenberg balance of N-complexes, and give some examples for some fixed integers N to illustrate our main results.
Bo LU , Zhenxing DI , Yifu LIU . Cartan-Eilenberg N-complexes with respect to self-orthogonal subcategories[J]. Frontiers of Mathematics in China, 2020 , 15(2) : 351 -365 . DOI: 10.1007/s11464-020-0828-y
1 |
Beligiannis A. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227(1): 268–361
|
2 |
Cartan H, Eilenberg S. Homological Algebra. Princeton: Princeton Univ Press, 1956
|
3 |
Cibils C, Solotar A, Wisbauer R. N-Complexes as functors, amplitude cohomology and Fusion rules. Comm Math Phys, 2007, 272(3): 837–849
|
4 |
Dubois-Violette M, Kerner R. Universal q-differential calculus and q-analog of homological algebra. Acta Math Univ Comenian (N S), 1996, 65(2): 175–188
|
5 |
Enochs E E. Cartan-Eilenberg complexes and resolutions. J Algebra, 2011, 342: 16–39
|
6 |
Estrada S. Monomial algebras over infinite quivers, applications to N-complexes of modules. Comm Algebra, 2007, 35 (10): 3214–3225
|
7 |
Geng Y X, Ding N Q. W -Gorenstein modules. J Algebra, 2011, 325: 132–146
|
8 |
Gillespie J. The homotopy category of N-complexes is a homotopy category. J Homotopy Relat Struct, 2015, 10: 93–106
|
9 |
Gillespie J, Hovey M. Gorenstein model structures and generalized derived categories. Proc Edinb Math Soc, 2010, 53(3): 675–696
|
10 |
Iyama O, Kato K, Miyachi J I. Derived categories of N-complexes. J Lond Math Soc, 2017, 96(3): 687–716
|
11 |
Kapranov M M. On the q-analog of homological algebra. arXiv: q-alg/9611005
|
12 |
Lu B, Di Z X. Gorenstein cohomology of N-complexes. J Algebra Appl, 2019, https://doi.org/10.1142/S0219498820501741
|
13 |
Lu B, Liu Z K. Cartan-Eilenberg complexes with respect to cotorsion pairs. Arch Math (Basel), 2014, 102(1): 35–48
|
14 |
Lu B, Liu Z K. Cartan-Eilenberg FP-injective complexes. J Aust Math Soc, 2017, 103: 387–401
|
15 |
Lu B, Ren W, Liu Z K. A note on Cartan-Eilenberg Gorenstein categories. Kodai Math J, 2015, 38: 209–227
|
16 |
Lu B, Wei J Q, Di Z X. W -Gorenstein N-complexes. Rocky Mountain J Math, 2019, 49(6): 1971–1992
|
17 |
Mayer W. A new homology theory I. Ann of Math, 1942, 43: 370–380
|
18 |
Mayer W. A new homology theory II. Ann of Math, 1942, 43: 594–605
|
19 |
Verdier J L. Des catégories dérivées des catégories abéliennes. Astérisque, Vol 239. Paris: Soc Math France, 1997
|
20 |
White D. Gorenstein projective dimension with respect to a semidualizing module. J Commut Algebra, 2010, 2: 111–137
|
21 |
Yang G, Liang L. Cartan-Eilenberg Gorenstein projective complexes. J Algebra Appl, 2014, 13(1): 1350068
|
22 |
Yang G, Liang L. Cartan-Eilenberg Gorenstein at complexes. Math Scand, 2014, 114: 5–25
|
23 |
Yang X Y, Cao T Y. Cotorsion pairs in CN(d). Algebra Colloq, 2017, 24: 577–602
|
24 |
Yang X Y, Ding N Q. The homotopy category and derived category of N-complexes. J Algebra, 2015, 426: 430{476
|
25 |
Yang X Y, Wang J P. The existence of homotopy resolutions of N-complexes. Homology Homotopy Appl, 2015, 17: 291–316
|
/
〈 | 〉 |