Cartan-Eilenberg N-complexes with respect to self-orthogonal subcategories

Bo LU, Zhenxing DI, Yifu LIU

PDF(294 KB)
PDF(294 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 351-365. DOI: 10.1007/s11464-020-0828-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Cartan-Eilenberg N-complexes with respect to self-orthogonal subcategories

Author information +
History +

Abstract

Let R be an arbitrary associated ring. For an integer N≥2 and a self-orthogonal subcategory W of R-modules, we study the notion of Cartan-Eilenberg WN-complexes. We show that an N-complex X is Cartan-Eilenberg W if and only if XX'X'' in which X' is a WN-complex and X'' is a graded R-module with Xn''W for all n. As applications of the result, we obtain some characterizations of Cartan-Eilenberg projective and injective N-complexes, establish Cartan and Eilenberg balance of N-complexes, and give some examples for some fixed integers N to illustrate our main results.

Keywords

Cartan-Eilenberg WN-complex / Cartan-Eilenberg projective N- complex / Cartan-Eilenberg injective N-complex / Cartan-Eilenberg balance

Cite this article

Download citation ▾
Bo LU, Zhenxing DI, Yifu LIU. Cartan-Eilenberg N-complexes with respect to self-orthogonal subcategories. Front. Math. China, 2020, 15(2): 351‒365 https://doi.org/10.1007/s11464-020-0828-y

References

[1]
Beligiannis A. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227(1): 268–361
CrossRef Google scholar
[2]
Cartan H, Eilenberg S. Homological Algebra. Princeton: Princeton Univ Press, 1956
CrossRef Google scholar
[3]
Cibils C, Solotar A, Wisbauer R. N-Complexes as functors, amplitude cohomology and Fusion rules. Comm Math Phys, 2007, 272(3): 837–849
CrossRef Google scholar
[4]
Dubois-Violette M, Kerner R. Universal q-differential calculus and q-analog of homological algebra. Acta Math Univ Comenian (N S), 1996, 65(2): 175–188
[5]
Enochs E E. Cartan-Eilenberg complexes and resolutions. J Algebra, 2011, 342: 16–39
CrossRef Google scholar
[6]
Estrada S. Monomial algebras over infinite quivers, applications to N-complexes of modules. Comm Algebra, 2007, 35 (10): 3214–3225
CrossRef Google scholar
[7]
Geng Y X, Ding N Q. W -Gorenstein modules. J Algebra, 2011, 325: 132–146
CrossRef Google scholar
[8]
Gillespie J. The homotopy category of N-complexes is a homotopy category. J Homotopy Relat Struct, 2015, 10: 93–106
CrossRef Google scholar
[9]
Gillespie J, Hovey M. Gorenstein model structures and generalized derived categories. Proc Edinb Math Soc, 2010, 53(3): 675–696
CrossRef Google scholar
[10]
Iyama O, Kato K, Miyachi J I. Derived categories of N-complexes. J Lond Math Soc, 2017, 96(3): 687–716
CrossRef Google scholar
[11]
Kapranov M M. On the q-analog of homological algebra. arXiv: q-alg/9611005
[12]
Lu B, Di Z X. Gorenstein cohomology of N-complexes. J Algebra Appl, 2019, https://doi.org/10.1142/S0219498820501741
CrossRef Google scholar
[13]
Lu B, Liu Z K. Cartan-Eilenberg complexes with respect to cotorsion pairs. Arch Math (Basel), 2014, 102(1): 35–48
CrossRef Google scholar
[14]
Lu B, Liu Z K. Cartan-Eilenberg FP-injective complexes. J Aust Math Soc, 2017, 103: 387–401
CrossRef Google scholar
[15]
Lu B, Ren W, Liu Z K. A note on Cartan-Eilenberg Gorenstein categories. Kodai Math J, 2015, 38: 209–227
CrossRef Google scholar
[16]
Lu B, Wei J Q, Di Z X. W -Gorenstein N-complexes. Rocky Mountain J Math, 2019, 49(6): 1971–1992
CrossRef Google scholar
[17]
Mayer W. A new homology theory I. Ann of Math, 1942, 43: 370–380
CrossRef Google scholar
[18]
Mayer W. A new homology theory II. Ann of Math, 1942, 43: 594–605
CrossRef Google scholar
[19]
Verdier J L. Des catégories dérivées des catégories abéliennes. Astérisque, Vol 239. Paris: Soc Math France, 1997
[20]
White D. Gorenstein projective dimension with respect to a semidualizing module. J Commut Algebra, 2010, 2: 111–137
CrossRef Google scholar
[21]
Yang G, Liang L. Cartan-Eilenberg Gorenstein projective complexes. J Algebra Appl, 2014, 13(1): 1350068
CrossRef Google scholar
[22]
Yang G, Liang L. Cartan-Eilenberg Gorenstein at complexes. Math Scand, 2014, 114: 5–25
CrossRef Google scholar
[23]
Yang X Y, Cao T Y. Cotorsion pairs in CN(d). Algebra Colloq, 2017, 24: 577–602
CrossRef Google scholar
[24]
Yang X Y, Ding N Q. The homotopy category and derived category of N-complexes. J Algebra, 2015, 426: 430{476
CrossRef Google scholar
[25]
Yang X Y, Wang J P. The existence of homotopy resolutions of N-complexes. Homology Homotopy Appl, 2015, 17: 291–316
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(294 KB)

Accesses

Citations

Detail

Sections
Recommended

/