WN-complex,Cartan-Eilenberg projective N- complex,Cartan-Eilenberg injective N-complex,Cartan-Eilenberg balance" /> WN-complex" /> WN-complex,Cartan-Eilenberg projective N- complex,Cartan-Eilenberg injective N-complex,Cartan-Eilenberg balance" />

Cartan-Eilenberg N-complexes with respect to self-orthogonal subcategories

Bo LU , Zhenxing DI , Yifu LIU

Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 351 -365.

PDF (294KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 351 -365. DOI: 10.1007/s11464-020-0828-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Cartan-Eilenberg N-complexes with respect to self-orthogonal subcategories

Author information +
History +
PDF (294KB)

Abstract

Let R be an arbitrary associated ring. For an integer N≥2 and a self-orthogonal subcategory W of R-modules, we study the notion of Cartan-Eilenberg WN-complexes. We show that an N-complex X is Cartan-Eilenberg W if and only if XX'X'' in which X' is a WN-complex and X'' is a graded R-module with Xn''W for all n. As applications of the result, we obtain some characterizations of Cartan-Eilenberg projective and injective N-complexes, establish Cartan and Eilenberg balance of N-complexes, and give some examples for some fixed integers N to illustrate our main results.

Keywords

WN-complex')">Cartan-Eilenberg WN-complex / Cartan-Eilenberg projective N- complex / Cartan-Eilenberg injective N-complex / Cartan-Eilenberg balance

Cite this article

Download citation ▾
Bo LU, Zhenxing DI, Yifu LIU. Cartan-Eilenberg N-complexes with respect to self-orthogonal subcategories. Front. Math. China, 2020, 15(2): 351-365 DOI:10.1007/s11464-020-0828-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beligiannis A. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227(1): 268–361

[2]

Cartan H, Eilenberg S. Homological Algebra. Princeton: Princeton Univ Press, 1956

[3]

Cibils C, Solotar A, Wisbauer R. N-Complexes as functors, amplitude cohomology and Fusion rules. Comm Math Phys, 2007, 272(3): 837–849

[4]

Dubois-Violette M, Kerner R. Universal q-differential calculus and q-analog of homological algebra. Acta Math Univ Comenian (N S), 1996, 65(2): 175–188

[5]

Enochs E E. Cartan-Eilenberg complexes and resolutions. J Algebra, 2011, 342: 16–39

[6]

Estrada S. Monomial algebras over infinite quivers, applications to N-complexes of modules. Comm Algebra, 2007, 35 (10): 3214–3225

[7]

Geng Y X, Ding N Q. W -Gorenstein modules. J Algebra, 2011, 325: 132–146

[8]

Gillespie J. The homotopy category of N-complexes is a homotopy category. J Homotopy Relat Struct, 2015, 10: 93–106

[9]

Gillespie J, Hovey M. Gorenstein model structures and generalized derived categories. Proc Edinb Math Soc, 2010, 53(3): 675–696

[10]

Iyama O, Kato K, Miyachi J I. Derived categories of N-complexes. J Lond Math Soc, 2017, 96(3): 687–716

[11]

Kapranov M M. On the q-analog of homological algebra. arXiv: q-alg/9611005

[12]

Lu B, Di Z X. Gorenstein cohomology of N-complexes. J Algebra Appl, 2019,

[13]

Lu B, Liu Z K. Cartan-Eilenberg complexes with respect to cotorsion pairs. Arch Math (Basel), 2014, 102(1): 35–48

[14]

Lu B, Liu Z K. Cartan-Eilenberg FP-injective complexes. J Aust Math Soc, 2017, 103: 387–401

[15]

Lu B, Ren W, Liu Z K. A note on Cartan-Eilenberg Gorenstein categories. Kodai Math J, 2015, 38: 209–227

[16]

Lu B, Wei J Q, Di Z X. W -Gorenstein N-complexes. Rocky Mountain J Math, 2019, 49(6): 1971–1992

[17]

Mayer W. A new homology theory I. Ann of Math, 1942, 43: 370–380

[18]

Mayer W. A new homology theory II. Ann of Math, 1942, 43: 594–605

[19]

Verdier J L. Des catégories dérivées des catégories abéliennes. Astérisque, Vol 239. Paris: Soc Math France, 1997

[20]

White D. Gorenstein projective dimension with respect to a semidualizing module. J Commut Algebra, 2010, 2: 111–137

[21]

Yang G, Liang L. Cartan-Eilenberg Gorenstein projective complexes. J Algebra Appl, 2014, 13(1): 1350068

[22]

Yang G, Liang L. Cartan-Eilenberg Gorenstein at complexes. Math Scand, 2014, 114: 5–25

[23]

Yang X Y, Cao T Y. Cotorsion pairs in CN(d). Algebra Colloq, 2017, 24: 577–602

[24]

Yang X Y, Ding N Q. The homotopy category and derived category of N-complexes. J Algebra, 2015, 426: 430{476

[25]

Yang X Y, Wang J P. The existence of homotopy resolutions of N-complexes. Homology Homotopy Appl, 2015, 17: 291–316

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (294KB)

763

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/