RESEARCH ARTICLE

Hardy space estimates for bi-parameter Littlewood-Paley square functions

  • Fanghui LIAO 1 ,
  • Zhengyang LI , 2
Expand
  • 1. School of Mathematics and Computational Sciences, Xiangtan University, Xiangtan 411105, China
  • 2. School of Mathematics and Computational Sciences, Hunan University of Science and Technology, Xiangtan 411201, China

Received date: 18 Nov 2019

Accepted date: 31 Jan 2020

Published date: 15 Apr 2020

Copyright

2020 Higher Education Press

Abstract

Suppose that g(f) are bi-parameter Littlewood-Paley square functions which were introduced by H. Martikainen. It is known that the L2(n×m) boundedness and the H1(n×m)L1(n×m) boundedness of g(f) have been proved by H. Martikainen and by Z. Li and Q. Xue, respectively. In this paper, we apply the vector-valued theory, the atomic decomposition of product Hardy spaces, and Journe's covering lemma to show that g(f) are bounded from Hp(n×m) to Lp(n×m) with p smaller than 1.

Cite this article

Fanghui LIAO , Zhengyang LI . Hardy space estimates for bi-parameter Littlewood-Paley square functions[J]. Frontiers of Mathematics in China, 2020 , 15(2) : 333 -349 . DOI: 10.1007/s11464-020-0821-5

1
Chang S Y, Fefferman R. A continuous version of duality of H1 with BMO on bi-disc. Ann of Math, 1980, 112: 179–201

DOI

2
Christ M, Journé J L. Polynomial growth estimates for multilinear singular integral operators. Acta Math, 1987, 159: 51–80

DOI

3
Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137–193

DOI

4
Fefferman R. Harmonic analysis on product spaces. Ann of Math, 1987, 126: 109–130

DOI

5
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143

DOI

6
Gundy R F, Stein E M. Hp theory for the poly-disc. Proc Natl Acad Sci USA, 1979, 76: 1026–1029

DOI

7
Han Y, Lee M Y, Lin C C, Lin Y C. Calderón-Zygmund operators on product Hardy spaces. J Funct Anal, 2010, 258: 2834–2861

DOI

8
Han Y, Yang D. Hp boundedness of Calderon-Zygmund operators on product spaces. Math Z, 2005, 249: 869–881

DOI

9
Hofmann S. A local Tb theorem for square functions. In: Mitrea D, Mitrea M, eds. Perspectives in Partial Differential Equations, Harmonic Analysis and Applications. Proc Sympos Pure Math, Vol 79. Providence: Amer Math Soc, 2000, 175–185

DOI

10
Journé J L. Calderón-Zygmund operators on product spaces. Rev Mat Iberoam, 1985, 1: 55–91

DOI

11
Li Z, Xue Q. Boundedness of bi-parameter Littlewood-Paley operators on product Hardy space. Rev Mat Complut, 2018, 31: 713–745

DOI

12
Malliavia M P, Malliavia P. Intégrales de Lusin-Calderon por les fonctions biharmoniques. Bull Sci Math, 1977, 101: 357–384

13
Martikainen H. Boundedness of a class of bi-parameter square functions in the upper half-spaces. J Funct Anal, 2014, 267: 3580–3597

DOI

14
Semmes S. Square function estimates and the T(b) theorem. Proc Amer Math Soc, 1990, 110: 721–726

DOI

15
Stein E M. On the functions of Littlewood-Paley: Lusin, and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430–466

DOI

16
Stein E M. Topics in Harmonic Analysis: Related to the Littlewood-Paley Theory. Ann of Math Stud. Princeton: Princeton Univ Press, 1970

DOI

Outlines

/