Frontiers of Mathematics in China >
Hardy space estimates for bi-parameter Littlewood-Paley square functions
Received date: 18 Nov 2019
Accepted date: 31 Jan 2020
Published date: 15 Apr 2020
Copyright
Suppose that g(f) are bi-parameter Littlewood-Paley square functions which were introduced by H. Martikainen. It is known that the boundedness and the boundedness of g(f) have been proved by H. Martikainen and by Z. Li and Q. Xue, respectively. In this paper, we apply the vector-valued theory, the atomic decomposition of product Hardy spaces, and Journe's covering lemma to show that g(f) are bounded from to with p smaller than 1.
Fanghui LIAO , Zhengyang LI . Hardy space estimates for bi-parameter Littlewood-Paley square functions[J]. Frontiers of Mathematics in China, 2020 , 15(2) : 333 -349 . DOI: 10.1007/s11464-020-0821-5
1 |
Chang S Y, Fefferman R. A continuous version of duality of H1 with BMO on bi-disc. Ann of Math, 1980, 112: 179–201
|
2 |
Christ M, Journé J L. Polynomial growth estimates for multilinear singular integral operators. Acta Math, 1987, 159: 51–80
|
3 |
Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137–193
|
4 |
Fefferman R. Harmonic analysis on product spaces. Ann of Math, 1987, 126: 109–130
|
5 |
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143
|
6 |
Gundy R F, Stein E M. Hp theory for the poly-disc. Proc Natl Acad Sci USA, 1979, 76: 1026–1029
|
7 |
Han Y, Lee M Y, Lin C C, Lin Y C. Calderón-Zygmund operators on product Hardy spaces. J Funct Anal, 2010, 258: 2834–2861
|
8 |
Han Y, Yang D. Hp boundedness of Calderon-Zygmund operators on product spaces. Math Z, 2005, 249: 869–881
|
9 |
Hofmann S. A local Tb theorem for square functions. In: Mitrea D, Mitrea M, eds. Perspectives in Partial Differential Equations, Harmonic Analysis and Applications. Proc Sympos Pure Math, Vol 79. Providence: Amer Math Soc, 2000, 175–185
|
10 |
Journé J L. Calderón-Zygmund operators on product spaces. Rev Mat Iberoam, 1985, 1: 55–91
|
11 |
Li Z, Xue Q. Boundedness of bi-parameter Littlewood-Paley operators on product Hardy space. Rev Mat Complut, 2018, 31: 713–745
|
12 |
Malliavia M P, Malliavia P. Intégrales de Lusin-Calderon por les fonctions biharmoniques. Bull Sci Math, 1977, 101: 357–384
|
13 |
Martikainen H. Boundedness of a class of bi-parameter square functions in the upper half-spaces. J Funct Anal, 2014, 267: 3580–3597
|
14 |
Semmes S. Square function estimates and the T(b) theorem. Proc Amer Math Soc, 1990, 110: 721–726
|
15 |
Stein E M. On the functions of Littlewood-Paley: Lusin, and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430–466
|
16 |
Stein E M. Topics in Harmonic Analysis: Related to the Littlewood-Paley Theory. Ann of Math Stud. Princeton: Princeton Univ Press, 1970
|
/
〈 | 〉 |