Frontiers of Mathematics in China >
Dimension of divergence sets for dispersive equation
Received date: 27 Nov 2019
Accepted date: 16 Apr 2020
Published date: 15 Apr 2020
Copyright
Consider the generalized dispersive equation defined by
where is a pseudo-differential operator with symbol . In the present paper, assuming that satisfies suitable growth conditions and the initial data in , we bound the Hausdorff dimension of the sets on which the pointwise convergence of solutions to the dispersive equations (*) fails. These upper bounds of Hausdorff dimension shall be obtained via the Kolmogorov-Seliverstov-Plessner method.Key words: Dispersive equation; Hausdor_ dimension; maximal operator
Senhua LAN , Tie LI , Yaoming NIU . Dimension of divergence sets for dispersive equation[J]. Frontiers of Mathematics in China, 2020 , 15(2) : 317 -331 . DOI: 10.1007/s11464-020-0835-z
1 |
Barceló J A, Bennett J M, Carbery A, Rogers K M. On the dimension of divergence sets of dispersive equation. Math Ann, 2011, 349: 599–622
|
2 |
Bennett J M, Rogers K M. On the size of divergence sets for the Schrödinger equation with radial data. Indiana Univ Math J, 2012, 61: 1–13
|
3 |
Bourgain J. On the Schrödinger maximal function in higher dimension. Proc Steklov Inst Math, 2013, 280: 46–60
|
4 |
Bourgain J. A note on the Schrödinger maximal function. J Anal Math, 2016, 130: 393–396
|
5 |
Carleson L. Some analytical problems related to statistical mechanics. In: Benedetto J J, ed. Euclidean Harmonic Analysis. Lecture Notes in Math, Vol 779. Berlin: Springer, 1979, 5–45
|
6 |
Cho Y, Lee S. Strichartz estimates in spherical coordinates. Indiana Univ Math J, 2013, 62: 991–1020
|
7 |
Cho Y, Lee S, Ozawa T. On small amplitude solutions to the generalized Boussinesq equations. Discrete Contin Dyn Syst, 2007, 17: 691–711
|
8 |
Dahlberg B, Kenig C. A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 205–209
|
9 |
Ding Y, Niu Y. Global L2 estimates for a class maximal operators associated to general dispersive equations. J Inequal Appl, 2015, 199: 1–21
|
10 |
Ding Y, Niu Y. Weighted maximal estimates along curve associated with dispersive equations. Anal Appl (Singap), 2017, 15: 225–240
|
11 |
Ding Y, Niu Y. Maximal estimate for solutions to a class of dispersive equation with radial initial value. Front Math China, 2017, 12: 1057–1084
|
12 |
Du X, Guth L, Li X. A sharp Schrödinger maximal estimate in ℝn. Ann of Math, 2017, 186: 607–640
|
13 |
Du X, Zhang R. Sharp L2 estimate of Schrödinger maximal function in higher dimensions. Ann of Math, 2019, 189: 837–861
|
14 |
Frölich J, Lenzmann E. Mean-field limit of quantum Bose gases and nonlinear Hartree equation. Sémin Équ Dériv Partielles, 2004, 19: 1–26
|
15 |
Grafakos L. Classical Fourier Analysis. 2nd ed. Grad Texts in Math, Vol 249. Berlin: Springer-Verlag, 2008
|
16 |
Guo Z, Peng L, Wang B. Decay estimates for a class of wave equations. J Funct Anal, 2008, 254: 1642–1660
|
17 |
Guo Z, Wang Y. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J Anal Math, 2014, 124: 1–38
|
18 |
Krieger J, Lenzmann E, Raphael P. Nondispersive solutions to the L2-critical half-wave equation. Arch Ration Mech Anal, 2013, 209: 61–129
|
19 |
Laskin N. Fractional quantum mechanics. Phys Rev E, 2002, 62: 3135–3145
|
20 |
Lee S. On pointwise convergence of the solutions to Schrödinger equations in ℝn. Int Math Res Not IMRN, 2006, Art ID: 32597 (pp 1–21)
|
21 |
Mattila P. Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Stud Adv Math, Vol 44. Cambridge: Cambridge Univ Press, 1995
|
22 |
Prestini E. Radial functions and regularity of solutions to the Schrödinger equation. Monatsh Math, 1990, 109: 135–143
|
23 |
Sjögren P, Sjolin P. Convergence properties for the time dependent Schrödinger equation. Ann Acad Sci Fenn Math, 1989, 14: 13–25
|
24 |
Sjölin P. Regularity of solutions to the Schrödinger equation. Duke Math J, 1987, 55: 699–715
|
25 |
Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton Math Ser, Vol 32. Princeton: Princeton Univ Press, 1971
|
26 |
Tao T. A sharp bilinear restrictions estimate for paraboloids. Geom Funct Anal, 2003, 13: 1359–1384
|
27 |
Vega L. Schrödinger equations: pointwise convergence to the initial data. Proc Amer Math Soc, 1988, 102: 874–878
|
28 |
Walther B G. A sharp weighted L2-estimate for the solution to the time-dependent Schrödinger equation. Ark Mat, 1999, 37: 381–393
|
29 |
Walther B G. Homogeneous estimates for oscillatory integrals. Acta Math Univ Comenian (N S), 2000, 69: 151–171
|
30 |
Walther B G. Regularity, decay, and best constants for dispersive equations. J Funct Anal, 2002, 89: 325–335
|
31 |
Walther B G. Global range estimates for maximal oscillatory integrals with radial test functions. Illinois J Math, 2012, 56: 521{532
|
32 |
Wang S L. On the weighted estimate of the solution associated with the Schrödinger equation. Proc Amer Math Soc, 1991, 113: 87–92
|
/
〈 | 〉 |