RESEARCH ARTICLE

Dimension of divergence sets for dispersive equation

  • Senhua LAN 1 ,
  • Tie LI 2 ,
  • Yaoming NIU , 2
Expand
  • 1. College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China
  • 2. Faculty of Mathematics, Baotou Teachers' College of Inner Mongolia University of Science and Technology, Baotou 014030, China

Received date: 27 Nov 2019

Accepted date: 16 Apr 2020

Published date: 15 Apr 2020

Copyright

2020 Higher Education Press

Abstract

Consider the generalized dispersive equation defined by

{itu+φΔ)u=0,(x,t)n×,u(x,0)=f(x),fϕ(n),(*)
where φ(Δ) is a pseudo-differential operator with symbol φ(|ξ|). In the present paper, assuming that φ satisfies suitable growth conditions and the initial data in Hs(n), we bound the Hausdorff dimension of the sets on which the pointwise convergence of solutions to the dispersive equations (*) fails. These upper bounds of Hausdorff dimension shall be obtained via the Kolmogorov-Seliverstov-Plessner method.

Cite this article

Senhua LAN , Tie LI , Yaoming NIU . Dimension of divergence sets for dispersive equation[J]. Frontiers of Mathematics in China, 2020 , 15(2) : 317 -331 . DOI: 10.1007/s11464-020-0835-z

1
Barceló J A, Bennett J M, Carbery A, Rogers K M. On the dimension of divergence sets of dispersive equation. Math Ann, 2011, 349: 599–622

DOI

2
Bennett J M, Rogers K M. On the size of divergence sets for the Schrödinger equation with radial data. Indiana Univ Math J, 2012, 61: 1–13

DOI

3
Bourgain J. On the Schrödinger maximal function in higher dimension. Proc Steklov Inst Math, 2013, 280: 46–60

DOI

4
Bourgain J. A note on the Schrödinger maximal function. J Anal Math, 2016, 130: 393–396

DOI

5
Carleson L. Some analytical problems related to statistical mechanics. In: Benedetto J J, ed. Euclidean Harmonic Analysis. Lecture Notes in Math, Vol 779. Berlin: Springer, 1979, 5–45

DOI

6
Cho Y, Lee S. Strichartz estimates in spherical coordinates. Indiana Univ Math J, 2013, 62: 991–1020

DOI

7
Cho Y, Lee S, Ozawa T. On small amplitude solutions to the generalized Boussinesq equations. Discrete Contin Dyn Syst, 2007, 17: 691–711

DOI

8
Dahlberg B, Kenig C. A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 205–209

DOI

9
Ding Y, Niu Y. Global L2 estimates for a class maximal operators associated to general dispersive equations. J Inequal Appl, 2015, 199: 1–21

DOI

10
Ding Y, Niu Y. Weighted maximal estimates along curve associated with dispersive equations. Anal Appl (Singap), 2017, 15: 225–240

DOI

11
Ding Y, Niu Y. Maximal estimate for solutions to a class of dispersive equation with radial initial value. Front Math China, 2017, 12: 1057–1084

DOI

12
Du X, Guth L, Li X. A sharp Schrödinger maximal estimate in ℝn. Ann of Math, 2017, 186: 607–640

DOI

13
Du X, Zhang R. Sharp L2 estimate of Schrödinger maximal function in higher dimensions. Ann of Math, 2019, 189: 837–861

DOI

14
Frölich J, Lenzmann E. Mean-field limit of quantum Bose gases and nonlinear Hartree equation. Sémin Équ Dériv Partielles, 2004, 19: 1–26

15
Grafakos L. Classical Fourier Analysis. 2nd ed. Grad Texts in Math, Vol 249. Berlin: Springer-Verlag, 2008

DOI

16
Guo Z, Peng L, Wang B. Decay estimates for a class of wave equations. J Funct Anal, 2008, 254: 1642–1660

DOI

17
Guo Z, Wang Y. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J Anal Math, 2014, 124: 1–38

DOI

18
Krieger J, Lenzmann E, Raphael P. Nondispersive solutions to the L2-critical half-wave equation. Arch Ration Mech Anal, 2013, 209: 61–129

DOI

19
Laskin N. Fractional quantum mechanics. Phys Rev E, 2002, 62: 3135–3145

DOI

20
Lee S. On pointwise convergence of the solutions to Schrödinger equations in ℝn. Int Math Res Not IMRN, 2006, Art ID: 32597 (pp 1–21)

DOI

21
Mattila P. Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Stud Adv Math, Vol 44. Cambridge: Cambridge Univ Press, 1995

DOI

22
Prestini E. Radial functions and regularity of solutions to the Schrödinger equation. Monatsh Math, 1990, 109: 135–143

DOI

23
Sjögren P, Sjolin P. Convergence properties for the time dependent Schrödinger equation. Ann Acad Sci Fenn Math, 1989, 14: 13–25

DOI

24
Sjölin P. Regularity of solutions to the Schrödinger equation. Duke Math J, 1987, 55: 699–715

DOI

25
Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton Math Ser, Vol 32. Princeton: Princeton Univ Press, 1971

DOI

26
Tao T. A sharp bilinear restrictions estimate for paraboloids. Geom Funct Anal, 2003, 13: 1359–1384

DOI

27
Vega L. Schrödinger equations: pointwise convergence to the initial data. Proc Amer Math Soc, 1988, 102: 874–878

DOI

28
Walther B G. A sharp weighted L2-estimate for the solution to the time-dependent Schrödinger equation. Ark Mat, 1999, 37: 381–393

DOI

29
Walther B G. Homogeneous estimates for oscillatory integrals. Acta Math Univ Comenian (N S), 2000, 69: 151–171

30
Walther B G. Regularity, decay, and best constants for dispersive equations. J Funct Anal, 2002, 89: 325–335

DOI

31
Walther B G. Global range estimates for maximal oscillatory integrals with radial test functions. Illinois J Math, 2012, 56: 521{532

DOI

32
Wang S L. On the weighted estimate of the solution associated with the Schrödinger equation. Proc Amer Math Soc, 1991, 113: 87–92

DOI

Outlines

/