Dimension of divergence sets for dispersive equation

Senhua LAN, Tie LI, Yaoming NIU

PDF(287 KB)
PDF(287 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 317-331. DOI: 10.1007/s11464-020-0835-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Dimension of divergence sets for dispersive equation

Author information +
History +

Abstract

Consider the generalized dispersive equation defined by

{itu+φΔ)u=0,(x,t)n×,u(x,0)=f(x),fϕ(n),(*)
where φ(Δ) is a pseudo-differential operator with symbol φ(|ξ|). In the present paper, assuming that φ satisfies suitable growth conditions and the initial data in Hs(n), we bound the Hausdorff dimension of the sets on which the pointwise convergence of solutions to the dispersive equations (*) fails. These upper bounds of Hausdorff dimension shall be obtained via the Kolmogorov-Seliverstov-Plessner method.

Keywords

Dispersive equation / Hausdor_ dimension / maximal operator

Cite this article

Download citation ▾
Senhua LAN, Tie LI, Yaoming NIU. Dimension of divergence sets for dispersive equation. Front. Math. China, 2020, 15(2): 317‒331 https://doi.org/10.1007/s11464-020-0835-z

References

[1]
Barceló J A, Bennett J M, Carbery A, Rogers K M. On the dimension of divergence sets of dispersive equation. Math Ann, 2011, 349: 599–622
CrossRef Google scholar
[2]
Bennett J M, Rogers K M. On the size of divergence sets for the Schrödinger equation with radial data. Indiana Univ Math J, 2012, 61: 1–13
CrossRef Google scholar
[3]
Bourgain J. On the Schrödinger maximal function in higher dimension. Proc Steklov Inst Math, 2013, 280: 46–60
CrossRef Google scholar
[4]
Bourgain J. A note on the Schrödinger maximal function. J Anal Math, 2016, 130: 393–396
CrossRef Google scholar
[5]
Carleson L. Some analytical problems related to statistical mechanics. In: Benedetto J J, ed. Euclidean Harmonic Analysis. Lecture Notes in Math, Vol 779. Berlin: Springer, 1979, 5–45
CrossRef Google scholar
[6]
Cho Y, Lee S. Strichartz estimates in spherical coordinates. Indiana Univ Math J, 2013, 62: 991–1020
CrossRef Google scholar
[7]
Cho Y, Lee S, Ozawa T. On small amplitude solutions to the generalized Boussinesq equations. Discrete Contin Dyn Syst, 2007, 17: 691–711
CrossRef Google scholar
[8]
Dahlberg B, Kenig C. A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 205–209
CrossRef Google scholar
[9]
Ding Y, Niu Y. Global L2 estimates for a class maximal operators associated to general dispersive equations. J Inequal Appl, 2015, 199: 1–21
CrossRef Google scholar
[10]
Ding Y, Niu Y. Weighted maximal estimates along curve associated with dispersive equations. Anal Appl (Singap), 2017, 15: 225–240
CrossRef Google scholar
[11]
Ding Y, Niu Y. Maximal estimate for solutions to a class of dispersive equation with radial initial value. Front Math China, 2017, 12: 1057–1084
CrossRef Google scholar
[12]
Du X, Guth L, Li X. A sharp Schrödinger maximal estimate in ℝn. Ann of Math, 2017, 186: 607–640
CrossRef Google scholar
[13]
Du X, Zhang R. Sharp L2 estimate of Schrödinger maximal function in higher dimensions. Ann of Math, 2019, 189: 837–861
CrossRef Google scholar
[14]
Frölich J, Lenzmann E. Mean-field limit of quantum Bose gases and nonlinear Hartree equation. Sémin Équ Dériv Partielles, 2004, 19: 1–26
[15]
Grafakos L. Classical Fourier Analysis. 2nd ed. Grad Texts in Math, Vol 249. Berlin: Springer-Verlag, 2008
CrossRef Google scholar
[16]
Guo Z, Peng L, Wang B. Decay estimates for a class of wave equations. J Funct Anal, 2008, 254: 1642–1660
CrossRef Google scholar
[17]
Guo Z, Wang Y. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J Anal Math, 2014, 124: 1–38
CrossRef Google scholar
[18]
Krieger J, Lenzmann E, Raphael P. Nondispersive solutions to the L2-critical half-wave equation. Arch Ration Mech Anal, 2013, 209: 61–129
CrossRef Google scholar
[19]
Laskin N. Fractional quantum mechanics. Phys Rev E, 2002, 62: 3135–3145
CrossRef Google scholar
[20]
Lee S. On pointwise convergence of the solutions to Schrödinger equations in ℝn. Int Math Res Not IMRN, 2006, Art ID: 32597 (pp 1–21)
CrossRef Google scholar
[21]
Mattila P. Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Stud Adv Math, Vol 44. Cambridge: Cambridge Univ Press, 1995
CrossRef Google scholar
[22]
Prestini E. Radial functions and regularity of solutions to the Schrödinger equation. Monatsh Math, 1990, 109: 135–143
CrossRef Google scholar
[23]
Sjögren P, Sjolin P. Convergence properties for the time dependent Schrödinger equation. Ann Acad Sci Fenn Math, 1989, 14: 13–25
CrossRef Google scholar
[24]
Sjölin P. Regularity of solutions to the Schrödinger equation. Duke Math J, 1987, 55: 699–715
CrossRef Google scholar
[25]
Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton Math Ser, Vol 32. Princeton: Princeton Univ Press, 1971
CrossRef Google scholar
[26]
Tao T. A sharp bilinear restrictions estimate for paraboloids. Geom Funct Anal, 2003, 13: 1359–1384
CrossRef Google scholar
[27]
Vega L. Schrödinger equations: pointwise convergence to the initial data. Proc Amer Math Soc, 1988, 102: 874–878
CrossRef Google scholar
[28]
Walther B G. A sharp weighted L2-estimate for the solution to the time-dependent Schrödinger equation. Ark Mat, 1999, 37: 381–393
CrossRef Google scholar
[29]
Walther B G. Homogeneous estimates for oscillatory integrals. Acta Math Univ Comenian (N S), 2000, 69: 151–171
[30]
Walther B G. Regularity, decay, and best constants for dispersive equations. J Funct Anal, 2002, 89: 325–335
CrossRef Google scholar
[31]
Walther B G. Global range estimates for maximal oscillatory integrals with radial test functions. Illinois J Math, 2012, 56: 521{532
CrossRef Google scholar
[32]
Wang S L. On the weighted estimate of the solution associated with the Schrödinger equation. Proc Amer Math Soc, 1991, 113: 87–92
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(287 KB)

Accesses

Citations

Detail

Sections
Recommended

/